FEEDBACK

ASD Colloquium Series - Spring 2020

ASD Colloquium Series - Spring 2020

The Astrophysics Science Division colloquia occur on Tuesdays at 3:45 pm, with an opportunity to meet the speaker at 3:30 pm, in building 34, room W120A/B (unless otherwise noted). Schedules from past colloquium seasons are available.

Contact: Knicole Colon

January

Jan 21 Chanda Prescod-Weinstein (University of New Hampshire) - Making a Universe with Axions
Jan 28 Ruth Daly (PSU & CCA) - Black Hole Spin and Accretion Disk Magnetic Field Strengths for over 700 Sources

February

Feb 04 Johanna Vos (American Museum of Natural History) - Characterising Cool Atmospheres with Variability Monitoring
Feb 11 Judit Szulagyi (University of Zurich) - The key for planet formation: The Circumplanetary Disk
Feb 18 Special Location: B34, W150
Thiago Signorini Goncalves (Observatorio do Valongo, UFRJ) - Lyman break analogs: local laboratories for star formation processes under extreme conditions
Feb 25 Jason Glenn (NASA GSFC) - The Galaxy Evolution Probe Concept and Other Opportunities (Beyond JWST!) for Far-Infrared Studies of Galaxy Evolution in the 2020s

March

Mar 03 Christopher Moore (University of Birmingham) - The Astrometric Effects of Gravitational Waves
Mar 10 Canceled - We are working to reschedule his visit for this fall.
Steven Finkelstein (University of Texas at Austin) - The Rise and Fall of Galaxies in the Early Universe
Mar 17 Canceled
Mar 24 Canceled
Mar 31 Canceled

April

Apr 07 Canceled
Apr 14 Canceled
Apr 15 Canceled
Apr 21 Canceled
Apr 28 Canceled

May

May 05 Canceled
May 12 Canceled
May 19 Canceled
May 26 No Colloquium

June

Jun 02 Canceled
Jun 09 Canceled

Making a Universe with Axions

Chanda Prescod-Weinstein

University of New Hampshire

Tuesday, Jan 21, 2020

Abstract

What’s an axion and why do people keep talking about Bose-Einstein condensates in space? In this talk, I will describe the axion as a popular solution for open problems in particle physics, most notably dark matter. I will discuss the possibility that neutron stars are astrophysical axion laboratories and what we may learn in future endeavors, including proposed X-ray and Gamma-ray missions such as STROBE-X, eXTP, and AMEGO.

Black Hole Spin and Accretion Disk Magnetic Field Strengths for over 700 Sources

Ruth Daly

PSU & CCA

Tuesday, Jan 28, 2020

Abstract

Black hole systems, composed of a black hole, accretion disk, and collimated outflow, will be discussed. Three active galactic nucleus (AGN) samples including 753 AGNs and 102 measurements of four stellar-mass galactic black holes (GBHs) will be considered. General expressions for black hole spin functions and accretion disk magnetic field strengths will be derived and applied to obtain the black hole spin function, spin, and accretion disk magnetic field strength in dimensionless and physical units for each source. Relatively high spin values of about (0.6 - 1) are obtained for the sources. The distributions of accretion disk magnetic field strengths for the three AGN samples are quite broad and have mean values of about 104 G, while those for stellar-mass GBHs have mean values of about 108 G. Good agreement is found between spin values obtained here and published values obtained with well-established methods; comparisons for one GBH and six AGNs indicate that similar spin values are obtained with independent methods. Black hole spin and disk magnetic field strength demographics indicate that black hole spin functions and spins are similar for all of the source types studied, including GBHs and different categories of AGNs. The method applied here does not depend on any specific accretion disk emission model and does not depend on a specific model that relates jet beam power to compact radio luminosity; hence, the results obtained here can be used to constrain and study these models.

Characterising Cool Atmospheres with Variability Monitoring

Johanna Vos

American Museum of Natural History

Tuesday, Feb 04, 2020

Abstract

Brown dwarfs act as powerful analogs to the directly-imaged exoplanets, with similar temperatures, masses and compositions. Photometric variability monitoring of brown dwarfs is a unique probe of their atmospheres, as it is sensitive to condensate clouds as they rotate in and out of view. Variability has now been robustly observed in a range of L,T and Y spectral type brown dwarfs and more recently in planetary-mass companions and free-floating exoplanet analogs. In this talk I will discuss some of the key takeaways from our recent variability studies of brown dwarfs, as well as prospects for extending this work to directly-imaged exoplanets in the future.

The key for planet formation: The Circumplanetary Disk

Judit Szulagyi

University of Zurich

Tuesday, Feb 11, 2020

Abstract

Nascent massive planets are surrounded by their own disk, the so-called circumplanetary disk. This channels material to the forming planet, serves as a birthplace for moons to grow, and affects the observational signatures of forming planets. The circumplanetary disk composition and chemistry will naturally affect that of the forming planet and of the moons. So understanding its role and characteristics is bringing us closer to understand planet- and moon-formation as a whole.

Our knowledge is still very limited on circumplanetary disks, as they are hard to resolve in computer simulations. We are just entering an era when the observations of these disks are possible, as the first observational evidence for their existence just came in May 2019.

I am carrying out sub-planet resolution thermo-hydrodynamical simulations of planet formation, trying to understand what are the characteristics of the circumplanetary environment, how we can detect forming planets and their circumplanetary disks in near-infrared, sub-millimeter and radio wavelengths or with hydrogen recombination lines, such as H-alpha. In my talk I will show mock observations in order to discuss which wavelength-range is the best to detect forming planets and what H-alpha fluxes we can expect from the circumplanetary environment. Finally, I will discuss how the circumplanetary disk alters the accretion rate and what does that mean for the timescales of planet-formation.

Lyman break analogs: local laboratories for star formation processes under extreme conditions

Thiago Signorini Goncalves

Observatorio do Valongo, UFRJ

Tuesday, Feb 18, 2020

Abstract

The formation of stars in galaxies in the early Universe happened under different physical conditions from those commonly found at low redshift. The interstellar medium was turbulent and metal-poor, and gas densities were much higher on average. Nevertheless, detailed observations of such galaxies represent a considerable challenge due to the large distances involved. In this talk, I will give a review of the work currently being done by our research group focusing on the sample of Lyman break analogs, living fossils at low redshift that are selected based on their remarkable similarities to typical distant star-forming galaxies. I will show what properties appear to generate the high star formation rates observed and the perspectives for future work on this sample in upcoming observatories.

The Galaxy Evolution Probe Concept and Other Opportunities (Beyond JWST!) for Far-Infrared Studies of Galaxy Evolution in the 2020s

Jason Glenn

NASA GSFC

Tuesday, Feb 25, 2020

Abstract

In this presentation, I will discuss the science goals and design of the Galaxy Evolution Probe concept, development of enabling detector technology for GEP, and other potential far-infrared opportunities, such as a MIDEX or a balloon.

Mid- and far-infrared observations of galaxies yield star formation rates and measurements of physical conditions of interstellar medium associated with star formation and AGN. GEP is a concept for a mid-infrared and far-infrared dedicated survey mission whose goals are: (1) to map the history of galaxy growth by star formation and accretion by supermassive black holes and to characterize the relation between those processes, and (2) to measure the buildup of heavy elements, such as carbon, nitrogen, and oxygen, in the hearts of galaxies over cosmic time. GEP surveys will come in two forms. The first will be a low-resolution multispectral imaging survey with coverage from 10 to 400 microns. Photometric redshifts will be obtained using bright polycyclic aromatic hydrocarbon emission features. The second will be deep, moderate-resolution spectroscopy from 24 to 193 microns that will detect atomic fine-structure lines over a range of ionization states to measure the impact of star formation and AGN on the interstellar medium and the history of the growth of metal content in galaxies. GEP will be enabled by development of arrays of kinetic inductance detectors -- superconducting microresonators -- whose principles of operation I will describe. The GEP has a target launch date in early 2029. After describing GEP and its new technology, I will describe other exciting nearer-term potential opportunities.

The Astrometric Effects of Gravitational Waves

Christopher Moore

University of Birmingham

Tuesday, Mar 03, 2020

Abstract

Gravitational waves near the Earth affect the light that reaches us from distant objects. One consequence of this is a periodic red/blue-shifting of the radio pulses from millisecond pulsars. A closely related effect is the period change in the apparent astrometric position of a star. Both of these effects can, in principle, be used to detect ultra-low frequency gravitational waves. In this talk I will describe the different ways in which astrometric measurements can be used to detect gravitational waves and compare this with the ongoing efforts using pulsar timing.

The Rise and Fall of Galaxies in the Early Universe

Steven Finkelstein

University of Texas at Austin

Tuesday, Mar 10, 2020

Abstract

Reionization was the last major phase transition of the universe, and both the time evolution and spatial variation of this process encode key information about the onset of luminous objects in the universe. While we think that massive stars within star-forming galaxies provide the needed ionizing photons, the observed escape fractions of these photons may be too low to complete reionization when combined with typical assumptions. We have devised a new semi-empirical model which resolves this tension by using simulation-motivated escape fractions, where the smallest halos have the highest escape fractions, leading to a successful completion of reionization by z=5.5 with low (<5%) average ionizing photon escape fractions. Our model makes a number of testable predictions, including: 1) AGNs contribute non-negligibly to the end of reionization, 2) the neutral fraction at z~7 is only 20%, and 3) significant star-formation must be occurring at z~9-10. I will show observational results from my group at UT Austin testing all of these assumptions, including results from ultra-deep Keck spectroscopy for Lyman-alpha emission at z~7-10, and the discovery of several remarkably bright galaxy candidates at z > 9. The abundance of bright galaxies at early times implies that the first quenched galaxies may exist earlier than predicted. I will finish by discussing a new moderate-depth (K~23) imaging survey over the ~20 square degree SHELA (the Spitzer/HETDEX Exploratory Large Area) survey, which we have used to discover ~5600 massive (log M/Msol > 11) galaxies at 3 < z < 5. Our analysis of the stellar populations in these objects shows that ~10% are quiescent (sSFR < 10^-11 yr^-1), nearly 20X the largest previous sample of massive quiescent galaxies in this epoch. Simulations have struggled to replicate this, finding that increasing AGN feedback to hasten quenching slows down galaxy growth enough such that massive galaxies form too late. I will discuss ongoing followup efforts with DECam, ALMA and Keck to confirm the nature of a significant fraction our sample, and accurately quantify the contamination rate.


Past Colloqia Schedules

2020: Spring
2019: Fall, Spring
2018: Fall, Spring
2017: Fall, Spring
2016: Fall, Spring
2015: Fall, Spring
2014: Fall, Spring
2013: Fall, Spring, Summer
2012: Fall, Spring
2011: Fall, Spring
2010: Fall, Spring

NASA Logo, National Aeronautics and Space Administration