Daniel R. Cremons

Daniel R. Cremons

  • Rsch AST, Earth Sciences Remote Sens
  • 301.614.6722
  • NASA/GSFC
  • Mail Code: 698
  • Greenbelt , MD 20771
  • Employer: NASA
  • Brief Bio

    Dr. Cremons designs and tests remote sensing instruments for planetary science applications. He is currently developing a spectroscopic lidar system for lunar volatiles as well as maturing a doppler lidar system for measuring aerosols and winds on Mars. Dr. Cremons also works to develop new techniques and methods that support science and exploration goals in the fields of infrared spectroscopy, optics, and laser physics.

    He recently led the optical testing and flight qualification of laser retroreflector arrays for the Commercial Lunar Payload Services (CLPS) program. These arrays were flown on the SpaceIL Beresheet and ISRO Chandrayaan-2 missions and are manifested on upcoming CLPS missions from Astrobotic, Intuitive Machines, and Masten Space Systems as well as others. These retroreflector arrays will create a permanent fiducial network of beacons that can be tracked with centimeter precision from lunar orbit with a laser altimeter.

    In addition to instrument development, Dr. Cremons is passionate about all aspects of mission design, and has taken part in studies for New Frontiers-class missions to Uranus (JPL Planetary Science Summer School Participant) and Mars (MARLI instrument scientist).

    Current Projects

    Small All-range Lidar (SALi) for Small Body Exploration

    Under the ROSES MatISSE program, this effort will mature to TRL 6 a combination science and navigation swath-mapping lidar for small body missions. Dr. Cremons leads the algorithm development portion of this program and acts as the instrument systems engineer. This instrument represents a new class of planetary lidar by combining three technologies (RZPN code modulation, fiber laser, HgCdTe APD) to create a system that is sensitive over six orders of magnitude, allowing it to operate from hundreds of kilometers in range down to the surface. This enables the instrument to provide survey science on approach (spin, body shape), provide sub-meter scale mapping of the body (topography, reflectance, slope, roughness), and act as a guidance and navigation sensor during landing or surface sampling (range, velocity).

    Small Lidar for Profiling Wind and Water Vapor from Planetary Landers

    Under the ROSES PICASSO program, this effort is to build and test a breadboard lidar system for Doppler wind and water vapor profile retrieval. The system is design for a lander or rover on Mars with an off-zenith, dual-transceiver design to obtain vector winds to the top of the planetary boundary layer. In addition, water vapor absorption lines near 1910 nm will be used to profile water vapor absorption as a function of altitude at all times of day and over the course of a Mars year. Field testing of the breadboard instrument will be done at Mauna Kea Observatory where dry conditions and low atmospheric pressure will be used to simulate Mars surface conditions.


    MARLI: Mars Lidar for Wind and Aerosol Measurements from Mars Orbit

    Dr. Cremons has worked on both the PICASSO and MatiSSE efforts to mature a direct detection Doppler lidar for global Mars wind retrievals from orbit. Under PICASSO, he co-led the build and testing of the breadboard Doppler lidar in the laboratory at GSFC and the test field campaign at the Goddard Geophysical and Astronomical Observatory to measure wind from aerosol backscattering Earth's atmosphere. He also developed the wind retrieval algorithm for the PICASSO and MatISSE programs. Under MatISSE, Dr. Cremons led the optical and mechanical design of the brassboard/prototype instrument and is currently leading the prototype testing.

    Laser Retroreflector Arrays for Commercial Lunar Landers

    Dr. Cremons has worked on a small team to design, build, and flight-qualify miniature lunar retroreflector arrays (LRAs) for Lunar Landers under the CLPS program. His work included leading the thermal vacuum, optical, and vibration testing of the arrays including developing an automated optical test system and thermal vacuum test setup. He was one of two GSFC scientists to integrate the LRA on the SpaceIL Beresheet lander in Nov. 2018. He also designed and fabricated vacuum-compatible optical housings to prevent optics contamination between integration and launch.

    Selected Publications

    Refereed

    Sun, X., D. Cremons, E. Mazarico, et al. G. Yang, J. B. Abshire, D. E. Smith, M. T. Zuber, M. Storm, N. Martin, J. Hwang, J. D. Beck, N. R. Huntoon, and D. M. Rawlings. 2021. "Small All-range Lidar for Asteroid and Comet Core Missions ." Sensors, 21 (9): 3081 [Full Text (Link)] [10.3390/s21093081]

    Cremons, D., X. Sun, J. B. Abshire, and E. Mazarico. 2021. "Small PN-Code Lidar for Asteroid and Comet Missions – Receiver Processing and Performance Simulations." Remote Sensing, (Submitted)

    Mazarico, E., X. Sun, J.-M. Torre, et al. C. Courde, J. Chabé, M. Aimar, H. Mariey, N. Maurice, M. K. Barker, D. Mao, D. R. Cremons, S. Bouquillon, T. Carlucci, V. Viswanathan, F. G. Lemoine, A. Bourgoin, P. Exertier, G. A. Neumann, M. T. Zuber, and D. E. Smith. 2020. "First Two-way Laser Ranging to a Lunar Orbiter: infrared observations from the Grasse station to LRO’s retro-reflector array ." Earth, Planets and Space, [Full Text (Link)] [10.1186/s40623-020-01243-w]

    Cremons, D. R., X. Sun, Z. H. Denny, et al. E. D. Hoffman, E. Mazarico, S. W. Wake, E. Aaron, and D. E. Smith. 2020. "Optical Characterization of Laser Retroreflector Arrays for Lunar Landers." Applied Optics, 59 (16): 5020-5031 [https://doi.org/10.1364/AO.388371]

    Jarmak, S., E. Leonard, A. Akins, et al. E. Dahl, D. Cremons, S. Cofield, A. Curtis, C. Dong, E. Dunham, B. Journaux, D. Murakami, W. Ng, M. Piquette, A. P. Girija, K. Rink, L. Schurmeier, N. Stein, N. Tallarida, M. Telus, L. Lowes, C. Budney, and K. Mitchell. 2020. "QUEST: A New Frontiers Uranus orbiter mission concept study." Acta Astronautica, 170: 6-26 [10.1016/j.actaastro.2020.01.030]

    Cremons, D. R., J. B. Abshire, X. Sun, et al. G. Allan, H. Riris, M. D. Smith, S. Guzewich, A. Yu, and F. Hovis. 2020. "Design of a direct-detection wind and aerosol lidar for mars orbit." CEAS Space Journal, 12 (2): 149-162 [10.1007/s12567-020-00301-z]

    Sun, X., D. E. Smith, E. D. Hoffman, et al. S. W. Wake, D. R. Cremons, E. Mazarico, J.-M. Lauenstein, and E. C. Aaron. 2019. "Small and Lightweight Laser Retro-Reflector Arrays for Lunar Landers." Applied Optics, 58 (33): 9259-9266 [10.1364/AO.58.009259]

    Cremons, D. R., D. X. Du, and D. J. Flannigan. 2017. "Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy." Physical Review Materials, 1 (7): 073801 [10.1103/physrevmaterials.1.073801]

    Pokorny, R. J., T. P. Klun, M. B. Ali, D. R. Cremons, and M. L. Toy. 2017. "Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility." U.S. Patent Office,

    Cremons, D. R., D. A. Plemmons, and D. J. Flannigan. 2017. "Defect-mediated phonon dynamics in TaS2 and WSe2." Structural Dynamics, 4 (4): 044019 [10.1063/1.4982817]

    Flannigan, D. J., D. R. Cremons, and D. T. Valley. 2017. "Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy." Journal of Materials Research, 32 (1): 239-247 [10.1557/jmr.2016.360]

    Cremons, D. R., D. A. Plemmons, and D. J. Flannigan. 2016. "Femtosecond electron imaging of defect-modulated phonon dynamics." Nature communications, 7: 11230 [10.1038/ncomms11230]

    Cremons, D. R., and D. J. Flannigan. 2016. "Direct in situ thermometry: Variations in reciprocal-lattice vectors and challenges with the Debye--Waller effect." Ultramicroscopy, 161: 10-16 [10.1016/j.ultramic.2015.10.022]

    Non-Refereed

    Sandford, M., P. G. Lucey, X. Sun, and D. Cremons. 2018. "A spectrographic receiver for laser spectrometers." Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII 10780: [10.1117/12.2324818]

    Cremons, D. R., J. B. Abshire, M. D. Smith, et al. S. D. Guzewich, H. Riris, X. Sun, A. W. Yu, G. Allan, and F. Hovis. 2018. "Development of a Mars lidar (MARLI) for measuring wind and aerosol profiles from orbit." Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XIV [10.1117/12.2325408]

    Education

    2017 - PhD, Materials Science - Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN

    2011 - BA, Chemistry, cum laude - Department of Chemistry, Carleton College, Northfield, MN

    Professional Societies

    American Geophysical Union, 2018 - Present
    Materials Research Society, 2015 - 2016

    Professional Service

    -Reviewer for internal NASA GSFC R&A programs

    -Reviewer for NASA R&A programs

    -Session Chair: SPIE Remote Sensing 2018 (Berlin, Germany)

    -Science advocate, AGU Congressional Meetings

    -Journal reviewer (Robotics, Applied Optics, Earth and Space Science, Sensors)

    Other Professional Information

    Patents

    1.    Klun, T. P.; Ali, M. B.; Pokorny, R. J.; Cremons, D. R.; Toy, M. L., Additive Comprising Low Surface Energy Group and Hydroxyl Groups and Coating Compositions. Patent No: US 9803042, published: Oct. 31, 2017 

    2.    Pokorny, R. J.; Klun, T. P.; Ali, M. B.; Cremons, D. R.; Toy, M. L, Coating Compositions Comprising Polymerizable Non-Ionic Surfactant Exhibiting Reduced Fingerprint Visibility. Patent No: US 9701850, published: July 11, 2017.  

    Special Experience

    2018 - Planetary Science Summer Seminar 2018 (Jet Propulsion Laboratory)

    Awards

    2017 - NASA Postdoctoral Fellowship, Universities Space Research Association

    2016 - Doctoral Dissertation Fellowship, University of Minnesota

    2016 - Outsdanding Teaching Assistant Award, University of Minnesota

    2015 - Excellence in Safety Award, University of Minnesota

    2011 - Distinction for Senior Integrative Exercise, Carleton College

    2006 - Eagle Scout Award, Boy Scouts of America

    Selected Public Outreach

    Volunteer, Moon Day with the Bowie Baysox 2018 - 2018
    Judge, Pennsylvania Junior Science and Humanities Symposium 2019 - Present
    Volunteer, Moon Outreach at the Apollo 50th Festival 7 / 2019 - 7 / 2019

    Brief Bio

    Dr. Cremons designs and tests remote sensing instruments for planetary science applications. He is currently developing a spectroscopic lidar system for lunar volatiles as well as maturing a doppler lidar system for measuring aerosols and winds on Mars. Dr. Cremons also works to develop new techniques and methods that support science and exploration goals in the fields of infrared spectroscopy, optics, and laser physics.

    He recently led the optical testing and flight qualification of laser retroreflector arrays for the Commercial Lunar Payload Services (CLPS) program. These arrays were flown on the SpaceIL Beresheet and ISRO Chandrayaan-2 missions and are manifested on upcoming CLPS missions from Astrobotic, Intuitive Machines, and Masten Space Systems as well as others. These retroreflector arrays will create a permanent fiducial network of beacons that can be tracked with centimeter precision from lunar orbit with a laser altimeter.

    In addition to instrument development, Dr. Cremons is passionate about all aspects of mission design, and has taken part in studies for New Frontiers-class missions to Uranus (JPL Planetary Science Summer School Participant) and Mars (MARLI instrument scientist).

    Selected Publications

    Refereed

    Sun, X., D. Cremons, E. Mazarico, et al. G. Yang, J. B. Abshire, D. E. Smith, M. T. Zuber, M. Storm, N. Martin, J. Hwang, J. D. Beck, N. R. Huntoon, and D. M. Rawlings. 2021. "Small All-range Lidar for Asteroid and Comet Core Missions ." Sensors 21 (9): 3081 [Full Text (Link)] [10.3390/s21093081]

    Cremons, D., X. Sun, J. B. Abshire, and E. Mazarico. 2021. "Small PN-Code Lidar for Asteroid and Comet Missions – Receiver Processing and Performance Simulations." Remote Sensing (Submitted)

    Mazarico, E., X. Sun, J.-M. Torre, et al. C. Courde, J. Chabé, M. Aimar, H. Mariey, N. Maurice, M. K. Barker, D. Mao, D. R. Cremons, S. Bouquillon, T. Carlucci, V. Viswanathan, F. G. Lemoine, A. Bourgoin, P. Exertier, G. A. Neumann, M. T. Zuber, and D. E. Smith. 2020. "First Two-way Laser Ranging to a Lunar Orbiter: infrared observations from the Grasse station to LRO’s retro-reflector array ." Earth, Planets and Space [Full Text (Link)] [10.1186/s40623-020-01243-w]

    Cremons, D. R., X. Sun, Z. H. Denny, et al. E. D. Hoffman, E. Mazarico, S. W. Wake, E. Aaron, and D. E. Smith. 2020. "Optical Characterization of Laser Retroreflector Arrays for Lunar Landers." Applied Optics 59 (16): 5020-5031 [https://doi.org/10.1364/AO.388371]

    Jarmak, S., E. Leonard, A. Akins, et al. E. Dahl, D. Cremons, S. Cofield, A. Curtis, C. Dong, E. Dunham, B. Journaux, D. Murakami, W. Ng, M. Piquette, A. P. Girija, K. Rink, L. Schurmeier, N. Stein, N. Tallarida, M. Telus, L. Lowes, C. Budney, and K. Mitchell. 2020. "QUEST: A New Frontiers Uranus orbiter mission concept study." Acta Astronautica 170 6-26 [10.1016/j.actaastro.2020.01.030]

    Cremons, D. R., J. B. Abshire, X. Sun, et al. G. Allan, H. Riris, M. D. Smith, S. Guzewich, A. Yu, and F. Hovis. 2020. "Design of a direct-detection wind and aerosol lidar for mars orbit." CEAS Space Journal 12 (2): 149-162 [10.1007/s12567-020-00301-z]

    Sun, X., D. E. Smith, E. D. Hoffman, et al. S. W. Wake, D. R. Cremons, E. Mazarico, J.-M. Lauenstein, and E. C. Aaron. 2019. "Small and Lightweight Laser Retro-Reflector Arrays for Lunar Landers." Applied Optics 58 (33): 9259-9266 [10.1364/AO.58.009259]

    Cremons, D. R., D. X. Du, and D. J. Flannigan. 2017. "Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy." Physical Review Materials 1 (7): 073801 [10.1103/physrevmaterials.1.073801]

    Pokorny, R. J., T. P. Klun, M. B. Ali, D. R. Cremons, and M. L. Toy. 2017. "Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility." U.S. Patent Office

    Cremons, D. R., D. A. Plemmons, and D. J. Flannigan. 2017. "Defect-mediated phonon dynamics in TaS2 and WSe2." Structural Dynamics 4 (4): 044019 [10.1063/1.4982817]

    Flannigan, D. J., D. R. Cremons, and D. T. Valley. 2017. "Multimodal visualization of the optomechanical response of silicon cantilevers with ultrafast electron microscopy." Journal of Materials Research 32 (1): 239-247 [10.1557/jmr.2016.360]

    Cremons, D. R., D. A. Plemmons, and D. J. Flannigan. 2016. "Femtosecond electron imaging of defect-modulated phonon dynamics." Nature communications 7 11230 [10.1038/ncomms11230]

    Cremons, D. R., and D. J. Flannigan. 2016. "Direct in situ thermometry: Variations in reciprocal-lattice vectors and challenges with the Debye--Waller effect." Ultramicroscopy 161 10-16 [10.1016/j.ultramic.2015.10.022]

    Non-Refereed

    Sandford, M., P. G. Lucey, X. Sun, and D. Cremons. 2018. "A spectrographic receiver for laser spectrometers." Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII 10780 [10.1117/12.2324818]

    Cremons, D. R., J. B. Abshire, M. D. Smith, et al. S. D. Guzewich, H. Riris, X. Sun, A. W. Yu, G. Allan, and F. Hovis. 2018. "Development of a Mars lidar (MARLI) for measuring wind and aerosol profiles from orbit." Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XIV [10.1117/12.2325408]

                                                                                                                                                                                            
    NASA Logo, National Aeronautics and Space Administration