Daniel Cremons

Daniel Cremons

  • Rsch AST, Earth Sciences Remote Sens
  • 301.614.6722
  • NASA/GSFC
  • Mail Code: 698
  • Greenbelt , MD 20771
  • Employer: NASA
  • Brief Bio

    Daniel Cremons designs and tests laser remote sensing instruments for planetary science applications. He is currently working on developing a spectroscopic lidar system for lunar volatiles as well as maturing a doppler lidar system for measuring aerosols and winds on Mars. He is also interested in new techniques that support science and exploration goals including navigation, spectroscopic mapping, and entry, descent, and landing.

    He recently led the optical testing and flight qualification of laser retroreflector arrays for lunar landers, to be carried by NASA lunar lander missions and for international and commercial partners.

    In addition to instrument development, he is interested in studying planetary atmospheres on Mars and Titan, as well as the history of volatiles in our solar system. He also has taken part in mission design studies for New Frontiers-class missions to Uranus (JPL Planetary Science Summer School) and Mars (MARLI instrument scientist).

    Current Projects

    MARLI: Mars Lidar for Wind and Aerosol Measurements from Mars Orbit

    • Built and testing the breadboard Doppler lidar in the laboratory at GSFC.
    • Co-leadthe breadboard field campaign at GGAO to measure wind from aerosol backscatterin Earth's atmosphere.
    • Developing data analysis pipeline and algorithms for wind retrieval
    • Aiding in the optical and mechanical design of the brassboard/prototype instrument.
    • Testing the proptype instrument and maturing major subsystems to TRL-6 via environmental and atmospheric testing

    Small All-range Lidar (SALi) for Small Body Exploration

    • Co-I: Swath Mapping Lidar with Fiber Laser and PN Code Modulation (PI: Xiaoli Sun)
    • Developing and simulating the on-board PN Code and range retrieveal algorithm. 
    • Prototype instrument testing.

    Laser Retroreflector Arrays for Commercial Lunar Landers

    • Performing thermal, vacuum, optical, and vibration testing on small laser retroreflector arrays for current and future commercial lunar landers.
    • Hardware and software engineering to support the above.

    Selected Publications

    Refereed

    Mazarico, E., X. Sun, J.-M. Torre, et al. C. Courde, J. Chabé, M. Aimar, H. Mariey, N. Maurice, M. K. Barker, D. Mao, D. R. Cremons, S. Bouquillon, T. Carlucci, V. Viswanathan, F. G. Lemoine, A. Bourgoin, P. Exertier, G. A. Neumann, M. T. Zuber, and D. E. Smith. 2020. "First Two-way Laser Ranging to a Lunar Orbiter: infrared observations from the Grasse station to LRO’s retro-reflector array ." Earth, Planets and Space, (In Press) [Full Text (Link)] [10.1186/s40623-020-01243-w]

    Cremons, D. R., X. Sun, Z. H. Denny, et al. E. D. Hoffman, E. Mazarico, S. W. Wake, E. Aaron, and D. E. Smith. 2020. "Optical Characterization of Laser Retroreflector Arrays for Lunar Landers." Applied Optics, 59 (16): 5020-5031 [https://doi.org/10.1364/AO.388371]

    Jarmak, S., E. Leonard, A. Akins, et al. E. Dahl, D. Cremons, S. Cofield, A. Curtis, C. Dong, E. Dunham, B. Journaux, D. Murakami, W. Ng, M. Piquette, A. P. Girija, K. Rink, L. Schurmeier, N. Stein, N. Tallarida, M. Telus, L. Lowes, C. Budney, and K. Mitchell. 2020. "QUEST: A New Frontiers Uranus orbiter mission concept study." Acta Astronautica, 170: 6-26 [10.1016/j.actaastro.2020.01.030]

    Cremons, D. R., J. B. Abshire, X. Sun, et al. G. Allan, H. Riris, M. D. Smith, S. Guzewich, A. Yu, and F. Hovis. 2020. "Design of a direct-detection wind and aerosol lidar for mars orbit." CEAS Space Journal, 12 (2): 149-162 [10.1007/s12567-020-00301-z]

    Sun, X., D. E. Smith, E. D. Hoffman, et al. S. W. Wake, D. R. Cremons, E. Mazarico, J.-M. Lauenstein, and E. C. Aaron. 2019. "Small and Lightweight Laser Retro-Reflector Arrays for Lunar Landers." Applied Optics, 58 (33): 9259-9266 [10.1364/AO.58.009259]

    Cremons, D. R., D. X. Du, and D. J. Flannigan. 2017. "Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy." Physical Review Materials, 1 (7): 073801 [10.1103/physrevmaterials.1.073801]

    Cremons, D. R., D. A. Plemmons, and D. J. Flannigan. 2016. "Femtosecond electron imaging of defect-modulated phonon dynamics." Nature communications, 7: 11230 [10.1038/ncomms11230]

    Non-Refereed

    Sandford, M., P. G. Lucey, X. Sun, and D. Cremons. 2018. "A spectrographic receiver for laser spectrometers." Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII 10780: [10.1117/12.2324818]

    Cremons, D. R., J. B. Abshire, M. D. Smith, et al. S. D. Guzewich, H. Riris, X. Sun, A. W. Yu, G. Allan, and F. Hovis. 2018. "Development of a Mars lidar (MARLI) for measuring wind and aerosol profiles from orbit." Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XIV [10.1117/12.2325408]

    Education

    2017 - PhD, Materials Science - Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN

    2011 - BA, Chemistry, cum laude - Department of Chemistry, Carleton College, Northfield, MN

    Professional Societies

    American Geophysical Union, 2018 - Present
    Materials Research Society, 2015 - 2016

    Professional Service

    -Reviewer for NASA GSFC R&A programs

    -External Reviewer for NASA R&A programs

    -Session Chair: SPIE Remote Sensing 2018 (Berlin, Germany)

    -Science advocate, AGU Congressional Meetings

    Special Experience

    2018 - Planetary Science Summer Seminar 2018 (Jet Propulsion Laboratory)

    Awards

    2017 - NASA Postdoctoral Fellowship, Universities Space Research Association

    2016 - Doctoral Dissertation Fellowship, University of Minnesota

    2016 - Outsdanding Teaching Assistant Award, University of Minnesota

    2015 - Excellence in Safety Award, University of Minnesota

    2011 - Distinction for Senior Integrative Exercise, Carleton College

    2006 - Eagle Scout Award, Boy Scouts of America

    Selected Public Outreach

    Volunteer, Moon Day with the Bowie Baysox 2018 - 2018
    Judge, Pennsylvania Junior Science and Humanities Symposium 2019 - Present
    Volunteer, Moon Outreach at the Apollo 50th Festival 7 / 2019 - 7 / 2019

    Brief Bio

    Daniel Cremons designs and tests laser remote sensing instruments for planetary science applications. He is currently working on developing a spectroscopic lidar system for lunar volatiles as well as maturing a doppler lidar system for measuring aerosols and winds on Mars. He is also interested in new techniques that support science and exploration goals including navigation, spectroscopic mapping, and entry, descent, and landing.

    He recently led the optical testing and flight qualification of laser retroreflector arrays for lunar landers, to be carried by NASA lunar lander missions and for international and commercial partners.

    In addition to instrument development, he is interested in studying planetary atmospheres on Mars and Titan, as well as the history of volatiles in our solar system. He also has taken part in mission design studies for New Frontiers-class missions to Uranus (JPL Planetary Science Summer School) and Mars (MARLI instrument scientist).

    Selected Publications

    Refereed

    Mazarico, E., X. Sun, J.-M. Torre, et al. C. Courde, J. Chabé, M. Aimar, H. Mariey, N. Maurice, M. K. Barker, D. Mao, D. R. Cremons, S. Bouquillon, T. Carlucci, V. Viswanathan, F. G. Lemoine, A. Bourgoin, P. Exertier, G. A. Neumann, M. T. Zuber, and D. E. Smith. 2020. "First Two-way Laser Ranging to a Lunar Orbiter: infrared observations from the Grasse station to LRO’s retro-reflector array ." Earth, Planets and Space (In Press) [Full Text (Link)] [10.1186/s40623-020-01243-w]

    Cremons, D. R., X. Sun, Z. H. Denny, et al. E. D. Hoffman, E. Mazarico, S. W. Wake, E. Aaron, and D. E. Smith. 2020. "Optical Characterization of Laser Retroreflector Arrays for Lunar Landers." Applied Optics 59 (16): 5020-5031 [https://doi.org/10.1364/AO.388371]

    Jarmak, S., E. Leonard, A. Akins, et al. E. Dahl, D. Cremons, S. Cofield, A. Curtis, C. Dong, E. Dunham, B. Journaux, D. Murakami, W. Ng, M. Piquette, A. P. Girija, K. Rink, L. Schurmeier, N. Stein, N. Tallarida, M. Telus, L. Lowes, C. Budney, and K. Mitchell. 2020. "QUEST: A New Frontiers Uranus orbiter mission concept study." Acta Astronautica 170 6-26 [10.1016/j.actaastro.2020.01.030]

    Cremons, D. R., J. B. Abshire, X. Sun, et al. G. Allan, H. Riris, M. D. Smith, S. Guzewich, A. Yu, and F. Hovis. 2020. "Design of a direct-detection wind and aerosol lidar for mars orbit." CEAS Space Journal 12 (2): 149-162 [10.1007/s12567-020-00301-z]

    Sun, X., D. E. Smith, E. D. Hoffman, et al. S. W. Wake, D. R. Cremons, E. Mazarico, J.-M. Lauenstein, and E. C. Aaron. 2019. "Small and Lightweight Laser Retro-Reflector Arrays for Lunar Landers." Applied Optics 58 (33): 9259-9266 [10.1364/AO.58.009259]

    Cremons, D. R., D. X. Du, and D. J. Flannigan. 2017. "Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy." Physical Review Materials 1 (7): 073801 [10.1103/physrevmaterials.1.073801]

    Cremons, D. R., D. A. Plemmons, and D. J. Flannigan. 2016. "Femtosecond electron imaging of defect-modulated phonon dynamics." Nature communications 7 11230 [10.1038/ncomms11230]

    Non-Refereed

    Sandford, M., P. G. Lucey, X. Sun, and D. Cremons. 2018. "A spectrographic receiver for laser spectrometers." Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII 10780 [10.1117/12.2324818]

    Cremons, D. R., J. B. Abshire, M. D. Smith, et al. S. D. Guzewich, H. Riris, X. Sun, A. W. Yu, G. Allan, and F. Hovis. 2018. "Development of a Mars lidar (MARLI) for measuring wind and aerosol profiles from orbit." Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing XIV [10.1117/12.2325408]

                                                                                                                                                                                            
    NASA Logo, National Aeronautics and Space Administration