Sander Goossens received his PhD in 2005 from Delft University of Technology, Faculty of Aerospace Engineering in the Netherlands. From 2005-2011 he worked at the National Astronomical Observatory in Japan on the SELenological and ENgineering Explorer (SELENE) mission (also called Kaguya). He was involved in the determination of the gravity field of the Moon using the first-ever farside data (combined with available historical lunar tracking data), and in the determination of the topography of the Moon using laser altimeter data.
In 2011 he joined the Planetary Geodynamics group (now: Planetary Geology, Geophysics, and Geochemistry Laboratory, or PGG lab) at Goddard as a scientist with the Center for Research and Exploration in Space Science & Technology/University of Maryland Baltimore County. At Goddard, he has extensively worked on gravity field determination of various terrestrial planets: the Moon using GRAIL data, Mercury using MESSENGER data, Mars using a combination of MGS, Odyssey, and MRO data, Venus using Magellan and Venus Express data, and Titan and Enceladus using Cassini data. These results have been used to infer models of the interior structure of the planets. In August 2021 he became a NASA employee in the PGG lab.
Recent highlights include:
- Deriving a relationship between spherical harmonic degree and source depth, that can help interpretations of gravity field models. See here for the paper.
- Involvement in a study that investigated the influence of small craters on true polar wander on the Moon, showing that although small, they resulted in a displacement of the Moon's pole by ~10˚ along the Earth-Moon tidal axis. See here for the paper.
- Provided the geophysical modeling to investigate the north-western Arabia Terra area on Mars. The geophysical analysis was in support of geochemical analysis showing supervolcanic resurfacing. See here for the paper.
- Used a novel combination of differenced image data to improve estimates of asteroid 101955 Bennu's shape, mass, rotation state, and gravity field. See here for the paper.
Currently, he is working on an analysis of GRAIL data to determine the deep interior structure of the Moon, and Cassini data to determine the gravity field of Saturn's moons Titan and Enceladus. He is a Participating Scientist for Juno's Extended Mission, focusing on the gravity field determination of the Galilean moons. He is also a Participating Scientist for JAXA's MMX mission, where he will use radio, camera, and laser altimeter data to determine Mars' moons' rotational state and gravity field and to verify models of their shape.