Sciences and Exploration Directorate

Rolf H Reichle

(RSCH AST, EARTH SCIENCES REMOTE SENS)

 rolf.h.reichle@nasa.gov

 301.614.5693

Org Code: 610.1

NASA/GSFC
Mail Code: 610.1
Greenbelt, MD 20771

Employer: NASA

Brief Bio


Rolf Reichle is a Research Physical Scientist with the Global Modeling and Assimilation Office (Code 610.1) at the NASA Goddard Space Flight Center in Greenbelt, Maryland, USA.

Dr. Reichle's research interests are primarily in data assimilation of satellite land surface observations, satellite remote sensing of the land surface, the global terrestrial water, energy, and carbon cycles, large-scale land-atmosphere interactions, and applications to numerical weather prediction, short-term climate forecasting, and retrospective climate analysis.

Dr. Reichle received the M.S. degree (”Diplom”) in Physics from the University of Heidelberg, Germany, in 1996 and the Ph.D. degree in Environmental Engineering from the Massachusetts Institute of Technology in 2000.

For more information please visit:  gmao.gsfc.nasa.gov/GMAO_personnel/Reichle_Rolf

Positions/Employment


Research Scientist

Global Modeling and Assimilation Office, NASA Goddard Space Flight Center - Greenbelt, MD, USA.

September 2008 - Present



Associate Research Scientist

Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County (hosted at the Global Modeling and Assimilation Office, NASA Goddard Space Flight Center) - Greenbelt, MD, USA.

August 2005 - August 2008



Assistant Research Scientist

Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County (hosted at the Global Modeling and Assimilation Office, NASA Goddard Space Flight Center) - Greenbelt, MD, USA.

February 2001 - July 2005



Postdoctoral Research Associate

Ralph M. Parsons Laboratory, Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology - Cambridge, MA, USA.

March 2000 - 2000



Research and Research Assistant

Institute of Environmental Engineering (IfU), Swiss Federal Institute of Technology (ETH) - Zürich, Switzerland.

May 1996 - August 1996


Education


Massachusetts Institute of Technology, Cambridge, MA
Dept. of Civil and Environmental Engineering
Aug 1996 – Jan 2000
Ph.D. Environmental Engineering
Thesis: Variational Assimilation of Remote Sensing Data for Land Surface Hydrologic Applications

Heidelberg University, Heidelberg, Germany
Institute of Environmental Physics
May 1993 – Mar 1996
MS Physics (with distinction)
Thesis: Time-dependent Effective Parameters in Heterogeneous and Homogeneous Transport Models with Kinetic Sorption

University of Montpellier, Montpellier, France
Dept. of Physics
Aug 1992 – Apr 1993
Exchange Student

Heidelberg University, Heidelberg, Germany
Dept. of Physics
Apr 1990 – Jul 1992
BS Physics
BS Mathematics

Awards


2016 Robert H. Goddard Honor Award - Exceptional Achievement for Science

2016 NASA Group Achievement Award (SMAP Science and Cal/Val Team)

2016 NASA Group Achievement Award (SMAP Science Data Systems Team)

2016 NASA Group Achievement Award (AirMOSS Team)

2016 NASA Special Act Award (MERRA-2 Team)

2017 NASA Group Achievement Award (SMAP Science Team)

2019 NASA Group Achievement Award (MERRA-2 Science Team)

2020 AGU Outstanding Reviewer Award (Reviews of Geophysics)

2022 Highly Cited Researcher in the Field of Geosciences (Web of Science)


Professional Societies


American Geophysical Union

Lifetime Member; Remote Sensing Technical Committee (Member, 2002-2005)

1997 - Present


American Meteorological Society

Annual Meeting Hydrology Program Committee (Co-Chair, 2010-2012); Hydrology Committee (Member, 2010-2016)

1999 - Present


International Association of Hydrological Sciences

2000 - Present

Professional Service


Scientific Committee, Fifth Satellite Soil Moisture Validation and Application
Workshop, Fairfax, Virginia (2018).

Scientific Committee, Fourth Satellite Soil Moisture Validation and Application Workshop,
Vienna, Austria (2017).

Member (2009 - 2017), GEWEX/WCRP Global Land Atmosphere System Study panel.

Scientific Committee, Third Satellite Soil Moisture Validation and Application Workshop,
New York, NY, USA (2016).

Scientific Steering Committee, 6th WMO Symposium on Data Assimilation, College Park, MD, USA (2013).

Scientific Committee, Satellite Soil Moisture Validation and Application Workshop, European Space Agency, Frascati, Italy (2013).

Program Committee, 11th International Precipitation Conference, Wageningen, Netherlands (2013).

Local Organizing Committee, 4th World Climate Research Programme International Conference on Reanalyses, Silver Spring, MD, USA (2012).
 

Other Professional Information


H-Index: 64Peer-Reviewed Publications: 159 (as of Feb. 10, 2023, https://www.webofscience.com/wos/author/record/E-1419-2012)

Publications


Refereed

Koster, R. D., Q. Liu, W. T. Crow, and R. H. Reichle. 2023. Late-fall satellite-based soil moisture observations show clear connections to subsequent spring streamflow Nature Communications 14 (1): 3545 [10.1038/s41467-023-39318-3]

Dibia, E. C., R. H. Reichle, J. L. Anderson, and X.-Z. Liang. 2023. Non-Gaussian Ensemble Filtering and Adaptive Inflation for Soil Moisture Data Assimilation Journal of Hydrometeorology 24 (6): 1039-1053 [10.1175/jhm-d-22-0046.1]

Reichle, R. H., S. Q. Zhang, J. Kolassa, Q. Liu, and R. Todling. 2023. A Weakly-Coupled Land Surface Analysis With SMAP Radiance Assimilation Improves GEOS Medium-Range Forecasts of Near-Surface Air Temperature and Humidity Quarterly Journal of the Royal Meteorological Society 149 1867-1889 [10.1002/qj.4486]

Massoud, E. C., L. Andrews, R. Reichle, et al. A. Molod, J. Park, S. Ruehr, and M. Girotto. 2023. Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System Earth System Dynamics 14 (1): 147-171 [10.5194/esd-14-147-2023]

Feldman, A. F., D. J. Short Gianotti, J. Dong, et al. R. Akbar, W. T. Crow, K. A. McColl, A. G. Konings, J. B. Nippert, S. J. Tumber‐Dávila, N. M. Holbrook, F. E. Rockwell, R. L. Scott, R. H. Reichle, A. Chatterjee, J. Joiner, B. Poulter, and D. Entekhabi. 2023. Remotely sensed soil moisture can capture dynamics relevant to plant water uptake Water Resources Research 59 e2022WR033814 [10.1029/2022wr033814]

Kumar, S., J. Kolassa, R. Reichle, et al. W. Crow, G. de Lannoy, P. de Rosnay, N. MacBean, M. Girotto, A. Fox, T. Quaife, C. Draper, B. Forman, G. Balsamo, S. Steele‐Dunne, C. Albergel, B. Bonan, J. Calvet, J. Dong, H. Liddy, and B. Ruston. 2022. An Agenda for Land Data Assimilation Priorities: Realizing the Promise of Terrestrial Water, Energy, and Vegetation Observations From Space Journal of Advances in Modeling Earth Systems 14 (11): e2022MS003259 [10.1029/2022ms003259]

Gruber, A., and R. H. Reichle. 2022. Uncertainty Estimation for SMAP Level-1 Brightness Temperature Assimilation at Different Timescales IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 9127-9145 [10.1109/jstars.2022.3216213]

De Lannoy, G. J., M. Bechtold, C. Albergel, et al. L. Brocca, J.-C. Calvet, A. Carrassi, W. T. Crow, P. de Rosnay, M. Durand, B. Forman, G. Geppert, M. Girotto, H.-J. Hendricks Franssen, T. Jonas, S. Kumar, H. Lievens, Y. Lu, C. Massari, V. R. Pauwels, R. H. Reichle, and S. Steele-Dunne. 2022. Perspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication Frontiers in Water 4 981745 [10.3389/frwa.2022.981745]

Crow, W. T., J. Dong, and R. H. Reichle. 2022. Leveraging Pre‐Storm Soil Moisture Estimates for Enhanced Land Surface Model Calibration in Ungauged Hydrologic Basins Water Resources Research 58 (8): e2021WR031565 [10.1029/2021wr031565]

Zhang, C., Z. Yang, H. Zhao, et al. Z. Sun, L. Di, R. Bindlish, P.-W. Liu, A. Colliander, R. Mueller, W. Crow, R. H. Reichle, J. Bolten, and S. H. Yueh. 2022. Crop-CASMA: A web geoprocessing and map service based architecture and implementation for serving soil moisture and crop vegetation condition data over U.S. Cropland International Journal of Applied Earth Observation and Geoinformation 112 102902 [10.1016/j.jag.2022.102902]

Zhang, Z., A. Chatterjee, L. Ott, et al. R. Reichle, A. F. Feldman, and B. Poulter. 2022. Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model Remote Sensing 14 (10): 2405 [10.3390/rs14102405]

Lee, E., R. D. Koster, L. E. Ott, et al. J. Joiner, F. Zeng, J. Kolassa, R. H. Reichle, K. R. Arsenault, A. Hazra, and S. Shukla. 2022. Skillful Seasonal Forecasts of Land Carbon Uptake in Northern Mid‐ and High Latitudes Geophysical Research Letters 49 (6): e2021GL097117 [10.1029/2021GL097117]

Apers, S., G. J. De Lannoy, A. J. Baird, et al. A. R. Cobb, G. C. Dargie, J. Pasquel, A. Gruber, A. Hastie, H. Hidayat, T. Hirano, A. M. Hoyt, A. J. Jovani‐Sancho, A. Katimon, A. Kurnain, R. D. Koster, M. Lampela, S. P. Mahanama, L. Melling, S. E. Page, R. H. Reichle, M. Taufik, J. Vanderborght, and M. Bechtold. 2022. Tropical Peatland Hydrology Simulated With a Global Land Surface Model Journal of Advances in Modeling Earth Systems 14 (3): e2021MS002784 [10.1029/2021ms002784]

Endsley, K. A., J. S. Kimball, and R. H. Reichle. 2022. Soil Respiration Phenology Improves Modeled Phase of Terrestrial net Ecosystem Exchange in Northern Hemisphere Journal of Advances in Modeling Earth Systems 14 (2): e2021MS002804 [10.1029/2021ms002804]

Colliander, A., R. Reichle, W. Crow, et al. M. Cosh, F. Chen, S. Chan, N. N. Das, R. Bindlish, J. Chaubell, S. Kim, Q. Liu, P. O'Neill, S. Dunbar, L. Dang, J. S. Kimball, T. Jackson, H. Al-Jassar, J. Asanuma, B. Bhattacharya, A. Berg, D. Bosch, L. Bourgeau-Chavez, T. Caldwell, J.-C. Calvet, C. Collins, K. Jensen, S. Livingston, E. Lopez-Baeza, J. Martinez-Fernandez, H. McNairn, M. Moghaddam, C. Montzka, C. Notarnicola, T. Pellarin, I. Greimeister-Pfeil, J. Pulliainen, J. Ramos, M. Seyfried, P. Starks, B. Su, R. van der Velde, Y. Zeng, M. Thibeault, M. Vreugdenhil, J. Walker, M. Zribi, D. Entekhabi, and S. Yueh. 2022. Validation of Soil Moisture Data Products From the NASA SMAP Mission IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 364-392 [10.1109/jstars.2021.3124743]

Vincent, F., M. Maertens, M. Bechtold, et al. E. Jobbagy, R. H. Reichle, V. Vanacker, J. A. Vrugt, J.-P. Wigneron, and G. J. De Lannoy. 2022. L-Band Microwave Satellite Data and Model Simulations Over the Dry Chaco to Estimate Soil Moisture, Soil Temperature, Vegetation, and Soil Salinity IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 6598-6614 [10.1109/jstars.2022.3193636]

Brust, C., J. S. Kimball, M. P. Maneta, K. Jencso, and R. H. Reichle. 2021. DroughtCast: A Machine Learning Forecast of the United States Drought Monitor Frontiers in Big Data 4 114 [10.3389/fdata.2021.773478]

Koster, R. D., Q. Liu, R. H. Reichle, and G. J. Huffman. 2021. Improved Estimates of Pentad Precipitation Through the Merging of Independent Precipitation Data Sets Water Resources Research 57 (12): e2021WR030330 [10.1029/2021wr030330]

Reichle, R., S. Zhang, Q. Liu, et al. C. Draper, J. Kolassa, and R. Todling. 2021. Assimilation of SMAP Brightness Temperature Observations in the GEOS Land-Atmosphere Data Assimilation System IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14 10628-10643 [10.1109/jstars.2021.3118595]

Crow, W. T., R. H. Reichle, and J. Dong. 2021. Expanding the Application of Soil Moisture Monitoring Systems through Regression-Based Transformation Journal of Hydrometeorology 22 (10): 2601-2615 [10.1175/jhm-d-21-0061.1]

Wang, J., B. A. Forman, M. Girotto, and R. H. Reichle. 2021. Estimating Terrestrial Snow Mass via Multi‐Sensor Assimilation of Synthetic AMSR‐E Brightness Temperature Spectral Differences and Synthetic GRACE Terrestrial Water Storage Retrievals Water Resources Research 57 (9): e2021WR029880 [10.1029/2021wr029880]

Madani, N., N. C. Parazoo, J. S. Kimball, et al. R. H. Reichle, A. Chatterjee, J. D. Watts, S. Saatchi, Z. Liu, A. Endsley, T. Tagesson, B. M. Rogers, A. Xu, J. A. Wang, T. Magney, and C. E. Miller. 2021. The Impacts of Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska Journal of Geophysical Research: Biogeosciences 126 e2020JG006078 [10.1029/2020JG006078]

Neelam, M., R. Bindlish, P. E. O'Neill, et al. G. J. Huffman, R. Reichle, S. Chan, and A. Colliander. 2021. Evaluation of GEOS Precipitation Flagging for SMAP Soil Moisture Retrieval Accuracy Journal of Hydrometeorology 22 1317-1332 [10.1175/jhm-d-20-0038.1]

Felsberg, A., G. J. De Lannoy, M. Girotto, et al. J. Poesen, R. H. Reichle, and T. Stanley. 2021. Global Soil Water Estimates as Landslide Predictor: The Effectiveness of SMOS, SMAP, and GRACE Observations, Land Surface Simulations, and Data Assimilation Journal of Hydrometeorology 22 (5): 1065-1084 [10.1175/jhm-d-20-0228.1]

Qiu, J., J. Dong, W. T. Crow, et al. X. Zhang, R. H. Reichle, and G. J. De Lannoy. 2021. The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis Hydrology and Earth System Sciences 25 (3): 1569-1586 [10.5194/hess-25-1569-2021]

Girotto, M., R. Reichle, M. Rodell, and V. Maggioni. 2021. Data Assimilation of Terrestrial Water Storage Observations to Estimate Precipitation Fluxes: A Synthetic Experiment Remote Sensing 13 (6): 1223 [10.3390/rs13061223]

Brust, C., J. S. Kimball, M. P. Maneta, et al. K. Jencso, M. He, and R. H. Reichle. 2021. Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA Remote Sensing of Environment 255 112277 [10.1016/j.rse.2020.112277]

Reichle, R. H., Q. Liu, J. V. Ardizzone, et al. W. T. Crow, G. J. De Lannoy, J. Dong, J. S. Kimball, and R. D. Koster. 2021. The Contributions of Gauge-Based Precipitation and SMAP Brightness Temperature Observations to the Skill of the SMAP Level-4 Soil Moisture Product Journal of Hydrometeorology 22 (2): 405-424 [10.1175/jhm-d-20-0217.1]

Seo, E., M.-I. Lee, and R. H. Reichle. 2021. Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter Remote Sensing of Environment 253 112222 [10.1016/j.rse.2020.112222]

Beck, H. E., M. Pan, D. G. Miralles, et al. R. H. Reichle, W. A. Dorigo, S. Hahn, J. Sheffield, L. Karthikeyan, G. Balsamo, R. M. Parinussa, A. I. van Dijk, J. Du, J. S. Kimball, N. Vergopolan, and E. F. Wood. 2021. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors Hydrology and Earth System Sciences 25 (1): 17-40 [10.5194/hess-25-17-2021]

Peng, J., C. Albergel, A. Balenzano, et al. L. Brocca, O. Cartus, M. H. Cosh, W. T. Crow, K. Dabrowska-Zielinska, S. Dadson, M. W. Davidson, P. de Rosnay, W. Dorigo, A. Gruber, S. Hagemann, M. Hirschi, Y. H. Kerr, F. Lovergine, M. D. Mahecha, P. Marzahn, F. Mattia, J. P. Musial, S. Preuschmann, R. H. Reichle, G. Satalino, M. Silgram, P. M. van Bodegom, N. E. Verhoest, W. Wagner, J. P. Walker, U. Wegmüller, and A. Loew. 2021. A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements Remote Sensing of Environment 252 112162 [10.1016/j.rse.2020.112162]

Madani, N., N. C. Parazoo, J. S. Kimball, et al. A. P. Ballantyne, R. H. Reichle, M. Maneta, S. Saatchi, P. I. Palmer, Z. Liu, and T. Tagesson. 2020. Recent Amplified Global Gross Primary Productivity Due to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints AGU Advances 1 (4): e2020AV000180 [10.1029/2020av000180]

Endsley, K. A., J. S. Kimball, R. H. Reichle, and J. D. Watts. 2020. Satellite Monitoring of Global Surface Soil Organic Carbon Dynamics Using the SMAP Level 4 Carbon Product Journal of Geophysical Research: Biogeosciences 125 (12): e2020JG006100 [10.1029/2020jg006100]

Li, X., J. Xiao, J. S. Kimball, et al. R. H. Reichle, R. L. Scott, M. E. Litvak, G. Bohrer, and C. Frankenberg. 2020. Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought Remote Sensing of Environment 251 112062 [10.1016/j.rse.2020.112062]

Dong, J., W. T. Crow, and R. Reichle. 2020. Improving rain/no-rain detection skill by merging precipitation estimates from different sources Journal of Hydrometeorology 21 (10): 2419–2429 [10.1175/jhm-d-20-0097.1]

Park, J., B. A. Forman, R. H. Reichle, G. De Lannoy, and S. B. Tarik. 2020. Evaluation of GEOS-Simulated L-Band Microwave Brightness Temperature Using Aquarius Observations over Non-Frozen Land across North America Remote Sensing 12 (18): 3098 [10.3390/rs12183098]

Bechtold, M., G. De Lannoy, R. Reichle, et al. D. Roose, N. Balliston, I. Burdun, K. Devito, J. Kurbatova, M. Strack, and E. Zarov. 2020. Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework Remote Sensing of Environment 246 111805 [10.1016/j.rse.2020.111805]

Kolassa, J., R. H. Reichle, R. D. Koster, et al. Q. Liu, S. Mahanama, and F. Zeng. 2020. An observation‐driven approach to improve vegetation phenology in a global land surface model Journal of Advances in Modeling Earth Systems 12 e2020MS002083 [10.1029/2020ms002083]

Gruber, A., G. De Lannoy, C. Albergel, et al. A. Al-Yaari, L. Brocca, J.-C. Calvet, A. Colliander, M. Cosh, W. Crow, W. Dorigo, C. Draper, M. Hirschi, Y. Kerr, A. Konings, W. Lahoz, K. McColl, C. Montzka, J. Muñoz-Sabater, J. Peng, R. Reichle, P. Richaume, C. Rüdiger, T. Scanlon, R. van der Schalie, J.-P. Wigneron, and W. Wagner. 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment 244 111806 [10.1016/j.rse.2020.111806]

Madani, N., J. S. Kimball, N. C. Parazoo, et al. A. P. Ballantyne, T. Tagesson, L. A. Jones, R. H. Reichle, P. I. Palmer, I. Velicogna, A. A. Bloom, S. Saatchi, Z. Liu, and A. Geruo. 2020. Below-surface water mediates the response of African forests to reduced rainfall Environmental Research Letters 15 (3): 034063 [10.1088/1748-9326/ab724a]

Liu, Z., J. S. Kimball, N. C. Parazoo, et al. A. P. Ballantyne, W. J. Wang, N. Madani, C. G. Pan, J. D. Watts, R. H. Reichle, O. Sonnentag, P. Marsh, M. Hurkuck, M. Helbig, W. L. Quinton, D. Zona, M. Ueyama, H. Kobayashi, and E. S. Euskirchen. 2020. Increased high‐latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition Global Change Biology 26 (2): 682-696 [10.1111/gcb.14863]

Reichle, R. H., Q. Liu, R. D. Koster, et al. W. T. Crow, G. J. De Lannoy, J. S. Kimball, J. V. Ardizzone, D. Bosch, A. Colliander, M. Cosh, J. Kolassa, S. P. Mahanama, J. Prueger, P. Starks, and J. P. Walker. 2019. Version 4 of the SMAP Level‐4 Soil Moisture Algorithm and Data Product Journal of Advances in Modeling Earth Systems 11 (10): 3106-3130 [10.1029/2019ms001729]

Koster, R. D., R. H. Reichle, S. D. Schubert, and S. P. Mahanama. 2019. Length Scales of Hydrological Variability as Inferred from SMAP Soil Moisture Retrievals Journal of Hydrometeorology 20 (11): 2129-2146 [10.1175/jhm-d-19-0070.1]

Lievens, H., M. Demuzere, H.-P. Marshall, et al. R. H. Reichle, L. Brucker, I. Brangers, P. de Rosnay, M. Dumont, M. Girotto, W. W. Immerzeel, T. Jonas, E. J. Kim, I. Koch, C. Marty, T. Saloranta, J. Schöber, and G. J. De Lannoy. 2019. Snow depth variability in the Northern Hemisphere mountains observed from space Nature Communications 10 (1): 4629 [10.1038/s41467-019-12566-y]

Crow, W. T., F. Chen, R. H. Reichle, and Y. Xia. 2019. Diagnosing Bias in Modeled Soil Moisture/Runoff Coefficient Correlation Using the SMAP Level 4 Soil Moisture Product Water Resources Research 55 (8): 7010-7026 [10.1029/2019wr025245]

Colliander, A., Z. Yang, R. Mueller, et al. A. Sandborn, R. Reichle, W. Crow, D. Entekhabi, and S. Yueh. 2019. Consistency Between NASS Surveyed Soil Moisture Conditions and SMAP Soil Moisture Observations Water Resources Research 55 (9): 7682-7693 [10.1029/2018wr024475]

Tao, J., R. D. Koster, R. H. Reichle, et al. B. A. Forman, Y. Xue, R. H. Chen, and M. Moghaddam. 2019. Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis The Cryosphere 13 (8): 2087-2110 [10.5194/tc-13-2087-2019]

Quets, J., G. J. De Lannoy, A. Al Yaari, et al. S. Chan, M. H. Cosh, A. Gruber, R. H. Reichle, R. Van der Schalie, and J.-P. Wigneron. 2019. Uncertainty in soil moisture retrievals: An ensemble approach using SMOS L-band microwave data Remote Sensing of Environment 229 133-147 [10.1016/j.rse.2019.05.008]

Bechtold, M., G. J. De Lannoy, R. D. Koster, et al. R. H. Reichle, S. P. Mahanama, W. Bleuten, M. A. Bourgault, C. Brümmer, I. Burdun, A. R. Desai, K. Devito, T. Grünwald, M. Grygoruk, E. R. Humphreys, J. Klatt, J. Kurbatova, A. Lohila, T. M. Munir, M. B. Nilsson, J. S. Price, M. Röhl, A. Schneider, and B. Tiemeyer. 2019. PEAT‐CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model Journal of Advances in Modeling Earth Systems 11 (7): 2130-2162 [10.1029/2018ms001574]

Dong, J., W. Crow, R. Reichle, et al. Q. Liu, F. Lei, and M. H. Cosh. 2019. A Global Assessment of Added Value in the SMAP Level 4 Soil Moisture Product Relative to Its Baseline Land Surface Model Geophysical Research Letters 46 (6604-6613): 2019GL083398 [10.1029/2019gl083398]

Girotto, M., R. H. Reichle, M. Rodell, et al. Q. Liu, S. Mahanama, and G. J. De Lannoy. 2019. Multi-sensor assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for soil moisture and shallow groundwater estimation Remote Sensing of Environment 227 12-27 [10.1016/j.rse.2019.04.001]

Draper, C., and R. H. Reichle. 2019. Assimilation of Satellite Soil Moisture for Improved Atmospheric Reanalyses Monthly Weather Review 147 (6): 2163-2188 [10.1175/mwr-d-18-0393.1]

Crow, W. T., S. Milak, M. Moghaddam, et al. A. Tabatabaeenejad, S. Jaruwatanadilok, X. Yu, Y. Shi, R. H. Reichle, Y. Hagimoto, and R. H. Cuenca. 2018. Spatial and Temporal Variability of Root-Zone Soil Moisture Acquired From Hydrologic Modeling and AirMOSS <italic>P</italic>-Band Radar IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (12): 4578-4590 [10.1109/jstars.2018.2865251]

Joiner, J., Y. Yoshida, M. Anderson, et al. T. Holmes, C. Hain, R. Reichle, R. Koster, E. Middleton, and F.-W. Zeng. 2018. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales Remote Sensing of Environment 219 339-352 [10.1016/j.rse.2018.10.020]

Balsamo, G., A. Agusti-Panareda, C. Albergel, et al. G. Arduini, A. Beljaars, J. Bidlot, N. Bousserez, S. Boussetta, A. Brown, R. Buizza, C. Buontempo, F. Chevallier, M. Choulga, H. Cloke, M. Cronin, M. Dahoui, P. De Rosnay, P. Dirmeyer, M. Dutra, M. Ek, P. Gentine, H. Hewitt, S. Keeley, Y. Kerr, S. Kumar, C. Lupu, J.-F. Mahfouf, J. McNorton, S. Mecklenburg, K. Mogensen, J. Muñoz-Sabater, R. Orth, F. Rabier, R. Reichle, B. Ruston, F. Pappenberger, I. Sandu, S. Seneviratne, S. Tietsche, I. Trigo, R. Uijlenhoet, N. Wedi, R. Woolway, and X. Zeng. 2018. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review Remote Sensing 10 (12): 2038 [10.3390/rs10122038]

Xue, Y., B. A. Forman, and R. H. Reichle. 2018. Estimating Snow Mass in North America Through Assimilation of Advanced Microwave Scanning Radiometer Brightness Temperature Observations Using the Catchment Land Surface Model and Support Vector Machines Water Resources Research 54 (9): 6488-6509 [10.1029/2017wr022219]

Du, J., J. S. Kimball, J. Galantowicz, et al. S.-B. Kim, S. K. Chan, R. Reichle, L. A. Jones, and J. D. Watts. 2018. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat Remote Sensing of Environment 213 1-17 [10.1016/j.rse.2018.04.054]

Du, J., J. Kimball, R. Reichle, et al. L. Jones, J. Watts, and Y. Kim. 2018. Global Satellite Retrievals of the Near-Surface Atmospheric Vapor Pressure Deficit from AMSR-E and AMSR2 Remote Sensing 10 (8): 1175 [10.3390/rs10081175]

Koster, R. D., W. T. Crow, R. H. Reichle, and S. P. Mahanama. 2018. Estimating Basin-Scale Water Budgets With SMAP Soil Moisture Data Water Resources Research 54 (7): 4228-4244 [10.1029/2018wr022669]

Crow, W. T., F. Chen, R. H. Reichle, Y. Xia, and Q. Liu. 2018. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models Geophysical Research Letters 45 (10): 4869-4878 [10.1029/2018gl077193]

Koster, R. D., Q. Liu, S. P. Mahanama, and R. H. Reichle. 2018. Improved Hydrological Simulation Using SMAP Data: Relative Impacts of Model Calibration and Data Assimilation Journal of Hydrometeorology 19 (4): 727-741 [10.1175/jhm-d-17-0228.1]

Toure, A. M., R. H. Reichle, B. A. Forman, A. Getirana, and G. J. Lannoy. 2018. Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model Remote Sensing 10 (2): 316 [10.3390/rs10020316]

Yi, Y., J. S. Kimball, R. H. Chen, et al. M. Moghaddam, R. H. Reichle, U. Mishra, D. Zona, and W. C. Oechel. 2018. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska The Cryosphere 12 (1): 145-161 [10.5194/tc-12-145-2018]

Draper, C. S., R. H. Reichle, and R. D. Koster. 2018. Assessment of MERRA-2 Land Surface Energy Flux Estimates Journal of Climate 31 (2): 671-691 [10.1175/jcli-d-17-0121.1]

Kolassa, J., R. Reichle, Q. Liu, et al. S. Alemohammad, P. Gentine, K. Aida, J. Asanuma, S. Bircher, T. Caldwell, A. Colliander, M. Cosh, C. Holifield Collins, T. Jackson, J. Martínez-Fernández, H. McNairn, A. Pacheco, M. Thibeault, and J. Walker. 2018. Estimating surface soil moisture from SMAP observations using a Neural Network technique Remote Sensing of Environment 204 43-59 [10.1016/j.rse.2017.10.045]

Reichle, R. H., G. J. De Lannoy, Q. Liu, et al. R. D. Koster, J. Kimball, W. Crow, J. V. Ardizzone, P. Chakraborty, D. W. Collins, A. L. Conaty, M. Girotto, L. Jones, J. Kolassa, H. P. Lievens, R. A. Lucchesi, and E. B. Smith. 2017. Global Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using Assimilation Diagnostics Journal of Hydrometeorology 18 3217-3237 [10.1175/JHM-D-17-0130.1]

Tao, J., R. H. Reichle, R. D. Koster, B. A. Forman, and Y. Xue. 2017. Evaluation and Enhancement of Permafrost Modeling With the NASA Catchment Land Surface Model Journal of Advances in Modeling Earth Systems 9 2771-2795 [10.1002/2017ms001019]

Kolassa, J., R. Reichle, Q. Liu, et al. M. Cosh, D. Bosch, T. Caldwell, A. Colliander, C. Holifield Collins, T. Jackson, S. Livingston, M. Moghaddam, and P. Starks. 2017. Data Assimilation to Extract Soil Moisture Information from SMAP Observations Remote Sensing 9 (11): 1179 [10.3390/rs9111179]

Jones, L. A., J. S. Kimball, R. H. Reichle, et al. N. Madani, J. Glassy, J. V. Ardizzone, A. Colliander, J. Cleverly, A. R. Desai, D. Eamus, E. S. Euskirchen, L. Hutley, C. Macfarlane, and R. L. Scott. 2017. The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO2 Exchange IEEE Transactions on Geoscience and Remote Sensing 55 (11): 6517-6532 [10.1109/tgrs.2017.2729343]

Reichle, R. H., G. J. De Lannoy, Q. Liu, et al. J. V. Ardizzone, A. Colliander, A. Conaty, W. Crow, T. J. Jackson, L. A. Jones, J. S. Kimball, R. D. Koster, S. P. Mahanama, E. B. Smith, A. Berg, S. Bircher, D. Bosch, T. G. Caldwell, M. Cosh, C. D. Holifield Collins, K. H. Jensen, S. Livingston, E. Lopez-Baeza, J. Martínez-Fernández, H. McNairn, M. Moghaddam, A. Pacheco, T. Pellarin, J. Prueger, T. Rowlandson, M. Seyfried, P. Starks, Z. Su, M. Thibeault, R. van der Velde, J. Walker, X. Wu, and Y. Zeng. 2017. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements Journal of Hydrometeorology 18 (10): 2621-2645 [10.1175/jhm-d-17-0063.1]

Lievens, H., R. H. Reichle, Q. Liu, et al. G. J. De Lannoy, R. S. Dunbar, S. B. Kim, N. N. Das, M. Cosh, J. P. Walker, and W. Wagner. 2017. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates Geophysical Research Letters 44 (12): 6145-6153 [10.1002/2017gl073904]

Crow, W. T., F. Chen, R. H. Reichle, and Q. Liu. 2017. L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting Geophysical Research Letters 44 (11): 5495-5503 [10.1002/2017gl073642]

Girotto, M., G. J. Lannoy, R. H. Reichle, et al. M. Rodell, C. Draper, S. N. Bhanja, and A. Mukherjee. 2017. Benefits and Pitfalls of GRACE Data Assimilation: a Case Study of Terrestrial Water Storage Depletion in India Geophysical Research Letters 44 4107-4115 [10.1002/2017gl072994]

Gelaro, R., W. McCarty, M. J. Suárez, et al. R. Todling, A. Molod, L. Takacs, C. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. da Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao. 2017. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) Journal of Climate 30 5419–5454 [10.1175/jcli-d-16-0758.1]

Reichle, R. H., C. S. Draper, Q. Liu, et al. M. Girotto, S. P. Mahanama, R. D. Koster, and G. J. De Lannoy. 2017. Assessment of MERRA-2 Land Surface Hydrology Estimates Journal of Climate 30 (8): 2937-2960 [10.1175/jcli-d-16-0720.1]

Koster, R. D., R. H. Reichle, and S. P. Mahanama. 2017. A Data-Driven Approach for Daily Real-Time Estimates and Forecasts of Near-Surface Soil Moisture Journal of Hydrometeorology 18 (3): 837-843 [10.1175/jhm-d-16-0285.1]

Reichle, R. H., Q. Liu, R. D. Koster, et al. C. S. Draper, S. P. Mahanama, and G. S. Partyka. 2017. Land Surface Precipitation in MERRA-2 Journal of Climate 30 (5): 1643-1664 [10.1175/jcli-d-16-0570.1]

Chen, F., W. T. Crow, A. Colliander, et al. M. H. Cosh, T. J. Jackson, R. Bindlish, R. H. Reichle, S. K. Chan, D. D. Bosch, P. J. Starks, D. C. Goodrich, and M. S. Seyfried. 2017. Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 10 489-502 [10.1109/jstars.2016.2569998]

Lievens, H., B. Martens, N. Verhoest, et al. S. Hahn, R. Reichle, and D. Miralles. 2017. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates Remote Sensing of Environment 189 194-210 [10.1016/j.rse.2016.11.022]

Kolassa, J., R. Reichle, and C. Draper. 2017. Merging active and passive microwave observations in soil moisture data assimilation Remote Sensing of Environment 191 117-130 [10.1016/j.rse.2017.01.015]

De Lannoy, G. J., and R. H. Reichle. 2016. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model Hydrology and Earth System Sciences 20 (12): 4895-4911 [10.5194/hess-20-4895-2016]

Su, C.-H., D. Ryu, W. Dorigo, et al. S. Zwieback, A. Gruber, C. Albergel, R. H. Reichle, and W. Wagner. 2016. Homogeneity of a global multisatellite soil moisture climate data record Geophysical Research Letters 43 (21): 11,245-11,252 [10.1002/2016gl070458]

de Lannoy, G. J., P. de Rosnay, and R. H. Reichle. 2016. Soil Moisture Data Assimilation Handbook of Hydrometeorological Ensemble Forecasting 1-43 [10.1007/978-3-642-40457-3_32-1]

Kumar, S. V., B. F. Zaitchik, C. D. Peters-Lidard, et al. M. Rodell, R. H. Reichle, B. Li, M. F. Jasinski, D. M. Mocko, A. Getirana, G. J. De Lannoy, M. H. Cosh, C. R. Hain, M. Anderson, K. R. Arsenault, Y. Xia, and M. Ek. 2016. Assimilation of gridded GRACE terrestrial water storage estimates in the North American Land Data Assimilation System J. Hydrometeor. 17 (7): 1951-1972 [10.1175/jhm-d-15-0157.1]

Girotto, M., G. J. De Lannoy, R. H. Reichle, and M. Rodell. 2016. Assimilation of gridded terrestrial water storage observations from GRACE into a Land Surface Model Water Resour. Res. 52 4164-4183 [10.1002/2015wr018417]

De Lannoy, G. J., and R. H. Reichle. 2016. Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation Journal of Hydrometeorology 17 (2): 669-691 [10.1175/jhm-d-15-0037.1]

Draper, C., and R. Reichle. 2015. The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual timescales Hydrology and Earth System Sciences 19 (12): 4831-4844 [10.5194/hess-19-4831-2015]

Kumar, S. V., C. D. Peters-Lidard, J. A. Santanello, et al. R. H. Reichle, C. S. Draper, R. D. Koster, G. Nearing, and M. F. Jasinski. 2015. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes Hydrology and Earth System Sciences 19 (11): 4463-4478 [10.5194/hess-19-4463-2015]

Yoshida, Y., J. Joiner, C. J. Tucker, et al. J. Berry, J. E. Lee, G. K. Walker, R. H. Reichle, R. D. Koster, A. I. Lyapustin, and Y. Wang. 2015. The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances Remote Sensing of Environment 166 163–177 [10.1016/j.rse.2015.06.008]

Draper, C. S., R. H. Reichle, G. J. De Lannoy, and B. Scarino. 2015. A Dynamic Approach to Addressing Observation-Minus-Forecast Bias in a Land Surface Skin Temperature Data Assimilation System J. Hydrometeor. 16 (1): 449–464 [10.1175/JHM-D-14-0087.1]

Forman, B. A., and R. H. Reichle. 2015. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Brightness Temperatures Over Snow-Covered Land in North America IEEE J. Sel. Top. Appl 8 (9): 4431-4441 [10.1109/JSTARS.2014.2325780]

De Lannoy, G. J., R. H. Reichle, J. Peng, et al. Y. Kerr, R. Castro, E. Kim, and Q. Liu. 2015. Converting Between SMOS and SMAP Level-1 Brightness Temperature Observations Over Nonfrozen Land IEEE Geosci. Remote Sens. Lett 12 1-5 [10.1109/LGRS.2015.2437612]

Farhadi, L., R. H. Reichle, G. J. De Lannoy, and J. S. Kimball. 2015. Assimilation of Freeze–Thaw Observations into the NASA Catchment Land Surface Model J. Hydrometeorol. 16 730-743 [10.1175/JHM-D-14-0065.1]

Kumar, S. V., C. D. Peters-Lidard, D. M. Mocko, et al. R. H. Reichle, Y. Liu, K. R. Arsenault, Y. Xia, M. Ek, G. A. Riggs, B. Livneh, and M. Cosh. 2014. Assimilation of passive microwave-based soil moisture and snow depth retrievals for drought estimation J. Hydrometeor. 15 (6): 2446-2469 [10.1175/JHM-D-13-0132.1]

Al-Yaari, A., J.-P. Wigneron, A. Ducharne, et al. Y. H. Kerr, W. Wagner, G. J. De Lannoy, R. H. Reichle, A. Al Bitar, W. Dorigo, P. Richaume, and A. Mialon. 2014. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land) Remote Sensing of Environment 152 614-626 [10.1016/j.rse.2014.07.013]

Robertson, F. R., M. G. Bosilovich, J. B. Roberts, et al. R. H. Reichle, R. F. Adler, L. Ricciardulli, W. Berg, and G. J. Huffman. 2014. Consistency of Estimated Global Water Cycle Variations over the Satellite Era J. Climate 27 (16): 6135-6154 [10.1175/JCLI-D-13-00384.1]

De Lannoy, G. J., R. Koster, R. H. Reichle, S. Mahanama, and Q. Liu. 2014. An updated treatment of soil texture and associated hydraulic properties in a global land modeling system J. Adv. Model. Earth Sys 6 957-979 [10.1002/2014MS000330]

Reichle, R. H. 2014. Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS Surv Geophys 35 (3): 577-606 [10.1007/s10712-013-9220-8]

Yi, Y., J. Kimball, and R. H. Reichle. 2014. Spring hydrology determines summer net carbon uptake in northern ecosystems Environ. Res. Lett. 9 (6): 064003 [10.1088/1748-9326/9/6/064003]

Wagner, W., L. Brocca, V. Naeimi, et al. R. H. Reichle, C. S. Draper, R. de Jeu, D. Ryu, C.-H. Su, A. Western, J.-C. Calvet, Y. Kerr, D. Leroux, M. Drusch, T. Jackson, S. Hahn, W. Dorigo, and C. Paulik. 2014. Clarifications on the “Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S.” IEEE Trans. Geosci. Remote Sensing 52 (3): 1901-1906 [10.1109/TGRS.2013.2282172]

Koster, R. D., G. K. Walker, S. P. Mahanama, and R. H. Reichle. 2014. Soil Moisture Initialization Error and Subgrid Variability of Precipitation in Seasonal Streamflow Forecasting J. Hydrometeor. 15 (1): 69-88 [10.1175/JHM-D-13-050.1]

Forman, B. A., R. H. Reichle, and C. Derksen. 2014. Estimating Passive Microwave Brightness Temperature Over Snow-Covered Land in North America Using a Land Surface Model and an Artificial Neural Network IEEE Trans. Geosci. Remote Sensing 52 (1): 235-248 [10.1109/TGRS.2013.2237913]

De Lannoy, G. J., R. H. Reichle, and J. A. Vrugt. 2014. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations Remote Sens. Environ. 148 146-157 [10.1016/j.rse.2014.03.030]

Draper, C. S., R. H. Reichle, R. de Jeu, et al. V. Naeimi, R. Parinussa, and W. Wagner. 2013. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains Remote Sens. Environ. 137 288-298 [10.1016/j.rse.2013.06.013]

Yi, Y., J. S. Kimball, L. A. Jones, et al. R. H. Reichle, R. R. Nemani, and H. A. Margolis. 2013. Recent climate and fire disturbance impacts on boreal and arctic ecosystem productivity estimated using a satellite-based terrestrial carbon flux model Journal of Geophysical Research: Biogeosciences 118 (2): 606-622 [10.1002/jgrg.20053]

Albergel, C., W. Dorigo, R. H. Reichle, et al. G. Balsamo, P. de Rosnay, J. Munoz-Sabater, L. Isaksen, R. de Jeu, and W. Wagner. 2013. Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing J. Hydrometeor. 14 (4): 1259-1277 [10.1175/JHM-D-12-0161.1]

Forman, B. A., and R. H. Reichle. 2013. The spatial scale of model errors and assimilated retrievals in a terrestrial water storage assimilation system Water Resour. Res. 49 (11): 7457-7468 [10.1002/2012WR012885]

Scarino, B., P. Minnis, R. Palikonda, et al. R. Reichle, D. Morstad, C. Yost, B. Shan, and Q. Liu. 2013. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data Remote Sensing 5 (1): 342-366 [10.3390/rs5010342]

Maggioni, V., R. H. Reichle, and E. N. Anagnostou. 2013. The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models J. Hydrometeorol. 14 (1): 368-374 [10.1175/JHM-D-12-0105.1]

De Lannoy, G. J., R. H. Reichle, and V. R. Pauwels. 2013. Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations J. Hydrometeor 14 (3): 765-785 [10.1175/JHM-D-12-092.1]

Sahoo, A. K., G. J. De Lannoy, R. H. Reichle, and P. R. Houser. 2013. Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA Advances in Water Resources 52 19-33 [10.1016/j.advwatres.2012.08.007]

Nearing, G. S., W. T. Crow, K. R. Thorp, et al. S. Moran, R. H. Reichle, and H. V. Gupta. 2012. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment Water Resour. Res. 48 (5): W05525 [10.1029/2011WR011420]

Holmes, T. R., T. Jackson, R. Reichle, and J. Basara. 2012. An assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements Water Resour. Res. 48 (2): W02531 [10.1029/2011WR010538]

De Lannoy, G. J., R. H. Reichle, K. R. Arsenault, et al. P. R. Houser, S. V. Kumar, N. E. Verhoest, and V. R. Pauwels. 2012. Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado Water Resour. Res. 48 (1): W01522 [10.1029/2011WR010588]

Maggioni, V., E. N. Anagnostou, and R. H. Reichle. 2012. The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling Hydrology and Earth System Sciences 16 (10): 3499-3515 [10.5194/hess-16-3499-2012]

Maggioni, V., R. H. Reichle, and E. N. Anagnostou. 2012. The Impact of Rainfall Error Characterization on the Estimation of Soil Moisture Fields in a Land Data Assimilation System J. Hydrometeorology 13 (3): 1107-1118 [10.1175/JHM-D-11-0115.1]

Draper, C. S., R. H. Reichle, G. J. De Lannoy, and Q. Liu. 2012. Assimilation of passive and active microwave soil moisture retrievals Geophysical Research Letters 39 (4): L04401 [10.1029/2011GL050655]

Mahanama, S., B. Livneh, R. D. Koster, D. Lettenmaier, and R. H. Reichle. 2012. Soil Moisture, Snow, and Seasonal Streamflow Forecasts in the United States Journal of Hydrometeorology 13 (1): 189-203 [10.1175/JHM-D-11-046.1]

Kumar, S., R. Reichle, K. Harrison, et al. C. Peters-Lidard, S. Yatheendradas, and J. Santanello. 2012. A comparison of methods for a priori bias correction in soil moisture data assimilation Water Resour. Res. 48 (3): W03515 [10.1029/2010WR010261]

Li, B., M. Rodell, B. F. Zaitchik, et al. R. H. Reichle, R. D. Koster, and T. M. van Dam. 2012. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe Journal of Hydrology 446-447 103-115 [10.1016/j.jhydrol.2012.04.035]

Forman, B., R. Reichle, and M. Rodell. 2012. Assimilation of terrestrial water storage from GRACE in a snow-dominated basin Water Resour. Res. 48 (1): W01507 [10.1029/2011WR011239]

Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik. 2012. Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations Water Resour. Res. 48 (7): W07525 [10.1029/2011WR011291]

Maggioni, V., R. H. Reichle, and E. N. Anagnostou. 2011. The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty J. Hydrometeor 12 (3): 413-428 [10.1175/2011JHM1355.1]

Yi, Y., J. Kimball, L. Jones, R. Reichle, and K. McDonald. 2011. Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission J. Climate 24 (15): 3797-3816 [10.1175/2011JCLI4034.1]

Rienecker, M. M., M. J. Suarez, R. Gelaro, et al. R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J. Joiner, R. D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C. R. Redder, R. H. Reichle, F. R. Robertson, A. G. Ruddick, M. Sienkiewicz, and J. Woollen. 2011. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications J. Climate 24 (14): 3624-3648 [10.1175/JCLI-D-11-00015.1]

Reichle, R. H., R. D. Koster, G. J. De Lannoy, et al. B. A. Forman, Q. Liu, S. P. Mahanama, and A. Toure. 2011. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates Journal of Climate 24 (24): 6322-6338 [10.1175/JCLI-D-10-05033.1]

Mueller, B., S. I. Seneviratne, C. Jimenez, et al. T. Corti, M. Hirschi, G. Balsamo, A. Beljaars, A. K. Betts, P. Ciais, P. Dirmeyer, J. B. Fisher, Z. Guo, M. Jung, C. D. Kummerow, F. Maignan, M. F. McCabe, R. Reichle, M. Reichstein, M. Rodell, W. B. Rossow, J. Sheffield, A. Teuling, K. Wang, and E. F. Wood. 2011. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations J Geophys Res 38 (6): L06402 [10.1029/2010GL046230]

Jimenez, C., C. Prigent, B. Mueller, et al. S. Seneviratne, M. McCabe, E. F. Wood, W. Rossow, G. Balsamo, A. Betts, P. Dirmeyer, J. Fisher, M. Jung, M. Kanamitsu, R. Reichle, M. Reichstein, M. Rodell, J. Sheffield, K. Tu, and K. Wang. 2011. Global intercomparison of 12 land surface heat flux estimates J Geophys Res 116 (D2): D02108 [10.1029/2010JD014545]

Liu, Q., R. H. Reichle, R. Bindlish, et al. M. Cosh, W. Crow, R. Jeu, G. J. De Lannoy, G. J. Huffman, and T. Jackson. 2011. The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System J. Hydrometeorology 12 (5): 750-765 [10.1175/JHM-D-10-05000.1]

De Lannoy, G. J., R. Reichle, P. Houser, et al. K. Arsenault, N. Verhoest, and V. Pauwels. 2010. Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model J. Hydrometeor 11 (2): 352-369 [10.1175/2009JHM1192.1]

Tedesco, M., R. H. Reichle, A. Loew, T. Markus, and J. Foster. 2010. Dynamic Approaches for Snow Depth Retrieval From Spaceborne Microwave Brightness Temperature IEEE Trans. Geosci. Remote Sensing 48 (4): 1955-1967 [10.1109/TGRS.2009.2036910]

Entekhabi, D., E. G. Njoku, P. E. ONeill, et al. K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R. Piepmeier, R. D. Koster, N. Martin, K. C. McDonald, M. Moghaddam, S. Moran, R. H. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. Van Zyl. 2010. The Soil Moisture Active Passive (SMAP) Mission Proc. IEEE 98 (5): 704-716 [10.1109/jproc.2010.2043918]

Entekhabi, D., R. H. Reichle, R. D. Koster, and W. T. Crow. 2010. Performance Metrics for Soil Moisture Retrievals and Application Requirements J. Hydrometeor 11 (3): 832-840 [10.1175/2010JHM1223.1]

Reichle, R. H., S. V. Kumar, S. P. Mahanama, R. D. Koster, and Q. Liu. 2010. Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models J. Hydrometeor 11 (5): 1103-1122 [10.1175/2010JHM1262.1]

Koster, R. D., S. P. Mahanama, B. Livneh, B. P. Letternmaier, and R. H. Reichle. 2010. Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow Nature Geoscience 3 (9): 613-616 [10.1038/NGEO944]

Kumar, S., R. H. Reichle, R. D. Koster, W. T. Crow, and C. Peters-Lidard. 2009. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations J. Hydrometeor 10 (6): 1534-1547 [10.1175/2009JHM1134.1]

Reichle, R. H. 2008. Data assimilation methods in the Earth sciences Advances in Water Resources 31 (11): 1411-1418 [10.1016/j.advwatres.2008.01.001]

Crow, W. T., and R. H. Reichle. 2008. Comparison of adaptive filtering techniques for land surface data assimilation Water Resour. Res. 44 (8): W08423 [10.1029/2008WR006883]

Zaitchik, B. F., M. Rodell, and R. H. Reichle. 2008. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin J. Hydrometeorol. 9 (3): 535-548 [10.1175/2007JHM951.1]

Reichle, R. H., W. T. Crow, and C. L. Keppenne. 2008. An adaptive ensemble Kalman filter for soil moisture data assimilation Water Resour. Res. 44 (3): W03423 [10.1029/2007WR006357]

Reichle, R. H., W. T. Crow, R. D. Koster, H. O. Sharif, and S. P. Mahanama. 2008. Contribution of soil moisture retrievals to land data assimilation products Geophysical Research Letters 35 (1): L01404 [10.1029/2007GL031986]

Kumar, S. V., R. H. Reichle, C. D. Peters-Lidard, et al. R. D. Koster, X. Zhan, W. T. Crow, J. B. Eylander, and P. R. Houser. 2008. A land surface data assimilation framework using the land information system: Description and applications Advances in Water Resources 31 (11): 1419-1432 [10.1016/j.advwatres.2008.01.013]

Mahanama, S. P., R. D. Koster, R. H. Reichle, and L. Zubair. 2008. The role of soil moisture initialization in subseasonal and seasonal streamflow prediction – A case study in Sri Lanka Advances in Water Resources 31 (10): 1333-1343 [10.1016/j.advwatres.2008.06.004]

Mahanama, S. P., R. D. Koster, R. H. Reichle, and M. J. Suarez. 2008. Impact of Subsurface Temperature Variability on Surface Air Temperature Variability: An AGCM Study J. Hydrometeor. 9 (4): 804-815 [10.1175/2008JHM949.1]

Koster, R., T. Bell, R. Reichle, M. Suarez, and S. Schubert. 2008. Using Observed Spatial Correlation Structures to Increase the Skill of Subseasonal Forecasts Mon. Wea. Rev. 136 (6): 1923-1930 [10.1175/2007MWR2255.1]

Kumar, S. V., C. Peters-Lidard, Y. Tian, et al. R. Reichle, J. Geiger, C. Alonge, J. Eylander, and P. Houser. 2008. An Integrated Hydrologic Modeling and Data Assimilation Framework Computer 41 (12): 52-59 [10.1109/MC.2008.475]

Reichle, R. H., R. D. Koster, P. Liu, et al. S. P. Mahanama, E. G. Njoku, and M. Owe. 2007. Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR) J. Geophys. Res. 112 (D9): D09108 [10.1029/2006JD008033]

De Lannoy, G. J., R. H. Reichle, P. R. Houser, V. R. Pauwels, and N. E. Verhoest. 2007. Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter Water Resour. Res. 43 (9): W09410 [10.1029/2006WR005449]

Crow, W. T., D. Entekhabi, R. D. Koster, and R. H. Reichle. 2006. Multiple spaceborne water cycle observations would aid modeling Eos, Transactions American Geophysical Union 87 (15): 149–153 [10.1029/2006EO150002]

Berg, A. A., J. S. Famiglietti, M. Rodell, et al. R. H. Reichle, U. Jambor, S. L. Holl, and P. R. Houser. 2005. Development of a hydrometeorological forcing data set for global soil moisture estimation Int. J. Climatol. 25 (13): 1697-1714 [10.1002/joc.1203]

Crow, W. T., R. D. Koster, and R. H. Reichle. 2005. Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products Geophysical Research Letters 32 (24): L24405 [10.1029/2005GL024889]

Reichle, R. H., and R. D. Koster. 2005. Global assimilation of satellite surface soil moisture retrievals into the NASA Catchment land surface model Geophysical Research Letters 32 (2): L02404 [10.1029/2004GL021700]

Reichle, R. H., and R. D. Koster. 2004. Bias reduction in short records of satellite soil moisture Geophysical Research Letters 31 (19): L19501 [10.1029/2004GL020938]

Koster, R. D., M. J. Suarez, P. Liu, et al. U. Jambor, A. Berg, M. Kistler, R. H. Reichle, M. Rodell, and J. Famiglietti. 2004. Realistic Initialization of Land Surface States: Impacts on Subseasonal Forecast Skill Journal of Hydrometeorology 5 (6): 1049-1063 [10.1175/JHM-387.1]

Reichle, R. H., R. D. Koster, J. R. Dong, and A. Berg. 2004. Global Soil Moisture from Satellite Observations, Land Surface Models, and Ground Data: Implications for Data Assimilation Journal of Hydrometeorology 5 (3): 430-442 [10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2]

Reichle, R. H., and R. D. Koster. 2003. Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation J. Hydrometeor 4 (6): 1229-1242 [10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2]

Walker, J. P., P. R. Houser, and R. H. Reichle. 2003. New Technologies Require Advances in Hydrologic Data Assimilation Eos 84 (49): 545, 551

Reichle, R. H., J. P. Walker, R. D. Koster, and P. R. Houser. 2002. Extended versus Ensemble Kalman Filtering for Land Data Assimilation J. Hydrometeor 3 (6): 728-740 [10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2]

Reichle, R. H., R. D. Koster, and S. M. Hassanizadeh. 2002. Land data assimilation with the ensemble Kalman filter: assessing model error parameters using innovations Computational Methods in Water Resources Vols 1 and 2 47 1387-1394

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi. 2002. Hydrologic Data Assimilation with the Ensemble Kalman Filter Mon Wea Rev 130 103-114

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi. 2001. Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications IEEE Transactions on Geosciences and Remote Sensing 39 1708-1718 [10.1109/36.942549]

Reichle, R. H., D. Entekhabi, and D. B. McLaughlin. 2001. Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach Water Resources Research 37 2353-2364 [10.1029/2001WR000475]

Reichle, R. H., W. Kinzelbach, and H. Kinzelbach. 1998. Effective parameters in heterogeneous and homogeneous transport models with kinetic sorption Water Resources Research 34 583-594 [10.1029/97WR03518]

Non-Refereed

Reichle, R. H., G. J. De Lannoy, Q. Liu, and J. V. Ardizzone. 2016. SMAP Data Assimilation at the GMAO Joint Center for Satellite Data Assimilation (JCSDA) Quarterly 53 1-5 [10.7289/V50C4SS7]