Dibia, E. C., R. H. Reichle, J. L. Anderson, and X.-Z. Liang. 2023. Non-Gaussian Ensemble Filtering and Adaptive Inflation for Soil Moisture Data Assimilation Journal of Hydrometeorology 24 (6):
1039-1053
[10.1175/jhm-d-22-0046.1]
Feldman, A. F., D. J. Short Gianotti, J. Dong, et al. 2023. Remotely sensed soil moisture can capture dynamics relevant to plant water uptake Water Resources Research 59 e2022WR033814
[10.1029/2022wr033814]
Kumar, S., J. Kolassa, R. Reichle, et al. 2022. An Agenda for Land Data Assimilation Priorities: Realizing the Promise of Terrestrial Water, Energy, and Vegetation Observations From Space Journal of Advances in Modeling Earth Systems 14 (11):
e2022MS003259
[10.1029/2022ms003259]
Gruber, A., and R. H. Reichle. 2022. Uncertainty Estimation for SMAP Level-1 Brightness Temperature Assimilation at Different Timescales IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 9127-9145
[10.1109/jstars.2022.3216213]
De Lannoy, G. J., M. Bechtold, C. Albergel, et al. 2022. Perspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication Frontiers in Water 4 981745
[10.3389/frwa.2022.981745]
Crow, W. T., J. Dong, and R. H. Reichle. 2022. Leveraging Pre‐Storm Soil Moisture Estimates for Enhanced Land Surface Model Calibration in Ungauged Hydrologic Basins Water Resources Research 58 (8):
e2021WR031565
[10.1029/2021wr031565]
Zhang, C., Z. Yang, H. Zhao, et al. 2022. Crop-CASMA: A web geoprocessing and map service based architecture and implementation for serving soil moisture and crop vegetation condition data over U.S. Cropland International Journal of Applied Earth Observation and Geoinformation 112 102902
[10.1016/j.jag.2022.102902]
Zhang, Z., A. Chatterjee, L. Ott, et al. 2022. Effect of Assimilating SMAP Soil Moisture on CO2 and CH4 Fluxes through Direct Insertion in a Land Surface Model Remote Sensing 14 (10):
2405
[10.3390/rs14102405]
Apers, S., G. J. De Lannoy, A. J. Baird, et al. 2022. Tropical Peatland Hydrology Simulated With a Global Land Surface Model Journal of Advances in Modeling Earth Systems 14 (3):
e2021MS002784
[10.1029/2021ms002784]
Endsley, K. A., J. S. Kimball, and R. H. Reichle. 2022. Soil Respiration Phenology Improves Modeled Phase of Terrestrial net Ecosystem Exchange in Northern Hemisphere Journal of Advances in Modeling Earth Systems 14 (2):
e2021MS002804
[10.1029/2021ms002804]
Colliander, A., R. Reichle, W. Crow, et al. 2022. Validation of Soil Moisture Data Products From the NASA SMAP Mission IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 364-392
[10.1109/jstars.2021.3124743]
Vincent, F., M. Maertens, M. Bechtold, et al. 2022. L-Band Microwave Satellite Data and Model Simulations Over the Dry Chaco to Estimate Soil Moisture, Soil Temperature, Vegetation, and Soil Salinity IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 6598-6614
[10.1109/jstars.2022.3193636]
Brust, C., J. S. Kimball, M. P. Maneta, K. Jencso, and R. H. Reichle. 2021. DroughtCast: A Machine Learning Forecast of the United States Drought Monitor Frontiers in Big Data 4 114
[10.3389/fdata.2021.773478]
Crow, W. T., R. H. Reichle, and J. Dong. 2021. Expanding the Application of Soil Moisture Monitoring Systems through Regression-Based Transformation Journal of Hydrometeorology 22 (10):
2601-2615
[10.1175/jhm-d-21-0061.1]
Wang, J., B. A. Forman, M. Girotto, and R. H. Reichle. 2021. Estimating Terrestrial Snow Mass via Multi‐Sensor Assimilation of Synthetic AMSR‐E Brightness Temperature Spectral Differences and Synthetic GRACE Terrestrial Water Storage Retrievals Water Resources Research 57 (9):
e2021WR029880
[10.1029/2021wr029880]
Madani, N., N. C. Parazoo, J. S. Kimball, et al. 2021. The Impacts of Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska Journal of Geophysical Research: Biogeosciences 126 e2020JG006078
[10.1029/2020JG006078]
Neelam, M., R. Bindlish, P. E. O'Neill, et al. 2021. Evaluation of GEOS Precipitation Flagging for SMAP Soil Moisture Retrieval Accuracy Journal of Hydrometeorology 22 1317-1332
[10.1175/jhm-d-20-0038.1]
Felsberg, A., G. J. De Lannoy, M. Girotto, et al. 2021. Global Soil Water Estimates as Landslide Predictor: The Effectiveness of SMOS, SMAP, and GRACE Observations, Land Surface Simulations, and Data Assimilation Journal of Hydrometeorology 22 (5):
1065-1084
[10.1175/jhm-d-20-0228.1]
Qiu, J., J. Dong, W. T. Crow, et al. 2021. The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis Hydrology and Earth System Sciences 25 (3):
1569-1586
[10.5194/hess-25-1569-2021]
Brust, C., J. S. Kimball, M. P. Maneta, et al. 2021. Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA Remote Sensing of Environment 255 112277
[10.1016/j.rse.2020.112277]
Seo, E., M.-I. Lee, and R. H. Reichle. 2021. Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman Filter Remote Sensing of Environment 253 112222
[10.1016/j.rse.2020.112222]
Beck, H. E., M. Pan, D. G. Miralles, et al. 2021. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors Hydrology and Earth System Sciences 25 (1):
17-40
[10.5194/hess-25-17-2021]
Peng, J., C. Albergel, A. Balenzano, et al. 2021. A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements Remote Sensing of Environment 252 112162
[10.1016/j.rse.2020.112162]
Madani, N., N. C. Parazoo, J. S. Kimball, et al. 2020. Recent Amplified Global Gross Primary Productivity Due to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints AGU Advances 1 (4):
e2020AV000180
[10.1029/2020av000180]
Endsley, K. A., J. S. Kimball, R. H. Reichle, and J. D. Watts. 2020. Satellite Monitoring of Global Surface Soil Organic Carbon Dynamics Using the SMAP Level 4 Carbon Product Journal of Geophysical Research: Biogeosciences 125 (12):
e2020JG006100
[10.1029/2020jg006100]
Li, X., J. Xiao, J. S. Kimball, et al. 2020. Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought Remote Sensing of Environment 251 112062
[10.1016/j.rse.2020.112062]
Dong, J., W. T. Crow, and R. Reichle. 2020. Improving rain/no-rain detection skill by merging precipitation estimates from different sources Journal of Hydrometeorology 21 (10):
2419–2429
[10.1175/jhm-d-20-0097.1]
Park, J., B. A. Forman, R. H. Reichle, G. De Lannoy, and S. B. Tarik. 2020. Evaluation of GEOS-Simulated L-Band Microwave Brightness Temperature Using Aquarius Observations over Non-Frozen Land across North America Remote Sensing 12 (18):
3098
[10.3390/rs12183098]
Bechtold, M., G. De Lannoy, R. Reichle, et al. 2020. Improved groundwater table and L-band brightness temperature estimates for Northern Hemisphere peatlands using new model physics and SMOS observations in a global data assimilation framework Remote Sensing of Environment 246 111805
[10.1016/j.rse.2020.111805]
Gruber, A., G. De Lannoy, C. Albergel, et al. 2020. Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment 244 111806
[10.1016/j.rse.2020.111806]
Madani, N., J. S. Kimball, N. C. Parazoo, et al. 2020. Below-surface water mediates the response of African forests to reduced rainfall Environmental Research Letters 15 (3):
034063
[10.1088/1748-9326/ab724a]
Liu, Z., J. S. Kimball, N. C. Parazoo, et al. 2020. Increased high‐latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition Global Change Biology 26 (2):
682-696
[10.1111/gcb.14863]
Lievens, H., M. Demuzere, H.-P. Marshall, et al. 2019. Snow depth variability in the Northern Hemisphere mountains observed from space Nature Communications 10 (1):
4629
[10.1038/s41467-019-12566-y]
Crow, W. T., F. Chen, R. H. Reichle, and Y. Xia. 2019. Diagnosing Bias in Modeled Soil Moisture/Runoff Coefficient Correlation Using the SMAP Level 4 Soil Moisture Product Water Resources Research 55 (8):
7010-7026
[10.1029/2019wr025245]
Colliander, A., Z. Yang, R. Mueller, et al. 2019. Consistency Between NASS Surveyed Soil Moisture Conditions and SMAP Soil Moisture Observations Water Resources Research 55 (9):
7682-7693
[10.1029/2018wr024475]
Quets, J., G. J. De Lannoy, A. Al Yaari, et al. 2019. Uncertainty in soil moisture retrievals: An ensemble approach using SMOS L-band microwave data Remote Sensing of Environment 229 133-147
[10.1016/j.rse.2019.05.008]
Bechtold, M., G. J. De Lannoy, R. D. Koster, et al. 2019. PEAT‐CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model Journal of Advances in Modeling Earth Systems 11 (7):
2130-2162
[10.1029/2018ms001574]
Dong, J., W. Crow, R. Reichle, et al. 2019. A Global Assessment of Added Value in the SMAP Level 4 Soil Moisture Product Relative to Its Baseline Land Surface Model Geophysical Research Letters 46 (6604-6613):
2019GL083398
[10.1029/2019gl083398]
Draper, C., and R. H. Reichle. 2019. Assimilation of Satellite Soil Moisture for Improved Atmospheric Reanalyses Monthly Weather Review 147 (6):
2163-2188
[10.1175/mwr-d-18-0393.1]
Crow, W. T., S. Milak, M. Moghaddam, et al. 2018. Spatial and Temporal Variability of Root-Zone Soil Moisture Acquired From Hydrologic Modeling and AirMOSS <italic>P</italic>-Band Radar IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (12):
4578-4590
[10.1109/jstars.2018.2865251]
Joiner, J., Y. Yoshida, M. Anderson, et al. 2018. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales Remote Sensing of Environment 219 339-352
[10.1016/j.rse.2018.10.020]
Balsamo, G., A. Agusti-Panareda, C. Albergel, et al. 2018. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review Remote Sensing 10 (12):
2038
[10.3390/rs10122038]
Xue, Y., B. A. Forman, and R. H. Reichle. 2018. Estimating Snow Mass in North America Through Assimilation of Advanced Microwave Scanning Radiometer Brightness Temperature Observations Using the Catchment Land Surface Model and Support Vector Machines Water Resources Research 54 (9):
6488-6509
[10.1029/2017wr022219]
Du, J., J. S. Kimball, J. Galantowicz, et al. 2018. Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat Remote Sensing of Environment 213 1-17
[10.1016/j.rse.2018.04.054]
Du, J., J. Kimball, R. Reichle, et al. 2018. Global Satellite Retrievals of the Near-Surface Atmospheric Vapor Pressure Deficit from AMSR-E and AMSR2 Remote Sensing 10 (8):
1175
[10.3390/rs10081175]
Crow, W. T., F. Chen, R. H. Reichle, Y. Xia, and Q. Liu. 2018. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models Geophysical Research Letters 45 (10):
4869-4878
[10.1029/2018gl077193]
Yi, Y., J. S. Kimball, R. H. Chen, et al. 2018. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska The Cryosphere 12 (1):
145-161
[10.5194/tc-12-145-2018]
Jones, L. A., J. S. Kimball, R. H. Reichle, et al. 2017. The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO2 Exchange IEEE Transactions on Geoscience and Remote Sensing 55 (11):
6517-6532
[10.1109/tgrs.2017.2729343]
Crow, W. T., F. Chen, R. H. Reichle, and Q. Liu. 2017. L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting Geophysical Research Letters 44 (11):
5495-5503
[10.1002/2017gl073642]
Chen, F., W. T. Crow, A. Colliander, et al. 2017. Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 10 489-502
[10.1109/jstars.2016.2569998]
Lievens, H., B. Martens, N. Verhoest, et al. 2017. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates Remote Sensing of Environment 189 194-210
[10.1016/j.rse.2016.11.022]
De Lannoy, G. J., and R. H. Reichle. 2016. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model Hydrology and Earth System Sciences 20 (12):
4895-4911
[10.5194/hess-20-4895-2016]
Su, C.-H., D. Ryu, W. Dorigo, et al. 2016. Homogeneity of a global multisatellite soil moisture climate data record Geophysical Research Letters 43 (21):
11,245-11,252
[10.1002/2016gl070458]
De Lannoy, G. J., and R. H. Reichle. 2016. Global Assimilation of Multiangle and Multipolarization SMOS Brightness Temperature Observations into the GEOS-5 Catchment Land Surface Model for Soil Moisture Estimation Journal of Hydrometeorology 17 (2):
669-691
[10.1175/jhm-d-15-0037.1]
Draper, C., and R. Reichle. 2015. The impact of near-surface soil moisture assimilation at subseasonal, seasonal, and inter-annual timescales Hydrology and Earth System Sciences 19 (12):
4831-4844
[10.5194/hess-19-4831-2015]
Draper, C. S., R. H. Reichle, G. J. De Lannoy, and B. Scarino. 2015. A Dynamic Approach to Addressing Observation-Minus-Forecast Bias in a Land Surface Skin Temperature Data Assimilation System J. Hydrometeor. 16 (1):
449–464
[10.1175/JHM-D-14-0087.1]
Forman, B. A., and R. H. Reichle. 2015. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Brightness Temperatures Over Snow-Covered Land in North America IEEE J. Sel. Top. Appl 8 (9):
4431-4441
[10.1109/JSTARS.2014.2325780]
Farhadi, L., R. H. Reichle, G. J. De Lannoy, and J. S. Kimball. 2015. Assimilation of Freeze–Thaw Observations into the NASA Catchment Land Surface Model J. Hydrometeorol. 16 730-743
[10.1175/JHM-D-14-0065.1]
Al-Yaari, A., J.-P. Wigneron, A. Ducharne, et al. 2014. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land) Remote Sensing of Environment 152 614-626
[10.1016/j.rse.2014.07.013]
Reichle, R. H. 2014. Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS Surv Geophys 35 (3):
577-606
[10.1007/s10712-013-9220-8]
Wagner, W., L. Brocca, V. Naeimi, et al. 2014. Clarifications on the “Comparison Between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S.” IEEE Trans. Geosci. Remote Sensing 52 (3):
1901-1906
[10.1109/TGRS.2013.2282172]
Forman, B. A., R. H. Reichle, and C. Derksen. 2014. Estimating Passive Microwave Brightness Temperature Over Snow-Covered Land in North America Using a Land Surface Model and an Artificial Neural Network IEEE Trans. Geosci. Remote Sensing 52 (1):
235-248
[10.1109/TGRS.2013.2237913]
De Lannoy, G. J., R. H. Reichle, and J. A. Vrugt. 2014. Uncertainty quantification of GEOS-5 L-band radiative transfer model parameters using Bayesian inference and SMOS observations Remote Sens. Environ. 148 146-157
[10.1016/j.rse.2014.03.030]
Yi, Y., J. S. Kimball, L. A. Jones, et al. 2013. Recent climate and fire disturbance impacts on boreal and arctic ecosystem productivity estimated using a satellite-based terrestrial carbon flux model Journal of Geophysical Research: Biogeosciences 118 (2):
606-622
[10.1002/jgrg.20053]
Scarino, B., P. Minnis, R. Palikonda, et al. 2013. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data Remote Sensing 5 (1):
342-366
[10.3390/rs5010342]
Maggioni, V., R. H. Reichle, and E. N. Anagnostou. 2013. The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models J. Hydrometeorol. 14 (1):
368-374
[10.1175/JHM-D-12-0105.1]
De Lannoy, G. J., R. H. Reichle, and V. R. Pauwels. 2013. Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations J. Hydrometeor 14 (3):
765-785
[10.1175/JHM-D-12-092.1]
Sahoo, A. K., G. J. De Lannoy, R. H. Reichle, and P. R. Houser. 2013. Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA Advances in Water Resources 52 19-33
[10.1016/j.advwatres.2012.08.007]
Nearing, G. S., W. T. Crow, K. R. Thorp, et al. 2012. Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment Water Resour. Res. 48 (5):
W05525
[10.1029/2011WR011420]
Holmes, T. R., T. Jackson, R. Reichle, and J. Basara. 2012. An assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements Water Resour. Res. 48 (2):
W02531
[10.1029/2011WR010538]
De Lannoy, G. J., R. H. Reichle, K. R. Arsenault, et al. 2012. Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado Water Resour. Res. 48 (1):
W01522
[10.1029/2011WR010588]
Maggioni, V., E. N. Anagnostou, and R. H. Reichle. 2012. The impact of model and rainfall forcing errors on characterizing soil moisture uncertainty in land surface modeling Hydrology and Earth System Sciences 16 (10):
3499-3515
[10.5194/hess-16-3499-2012]
Maggioni, V., R. H. Reichle, and E. N. Anagnostou. 2012. The Impact of Rainfall Error Characterization on the Estimation of Soil Moisture Fields in a Land Data Assimilation System J. Hydrometeorology 13 (3):
1107-1118
[10.1175/JHM-D-11-0115.1]
Draper, C. S., R. H. Reichle, G. J. De Lannoy, and Q. Liu. 2012. Assimilation of passive and active microwave soil moisture retrievals Geophysical Research Letters 39 (4):
L04401
[10.1029/2011GL050655]
Li, B., M. Rodell, B. F. Zaitchik, et al. 2012. Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe Journal of Hydrology 446-447 103-115
[10.1016/j.jhydrol.2012.04.035]
Maggioni, V., R. H. Reichle, and E. N. Anagnostou. 2011. The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty J. Hydrometeor 12 (3):
413-428
[10.1175/2011JHM1355.1]
Yi, Y., J. Kimball, L. Jones, R. Reichle, and K. McDonald. 2011. Evaluation of MERRA Land Surface Estimates in Preparation for the Soil Moisture Active Passive Mission J. Climate 24 (15):
3797-3816
[10.1175/2011JCLI4034.1]
Rienecker, M. M., M. J. Suarez, R. Gelaro, et al. 2011. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications J. Climate 24 (14):
3624-3648
[10.1175/JCLI-D-11-00015.1]
Mueller, B., S. I. Seneviratne, C. Jimenez, et al. 2011. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations J Geophys Res 38 (6):
L06402
[10.1029/2010GL046230]
Jimenez, C., C. Prigent, B. Mueller, et al. 2011. Global intercomparison of 12 land surface heat flux estimates J Geophys Res 116 (D2):
D02108
[10.1029/2010JD014545]
De Lannoy, G. J., R. Reichle, P. Houser, et al. 2010. Satellite-Scale Snow Water Equivalent Assimilation into a High-Resolution Land Surface Model J. Hydrometeor 11 (2):
352-369
[10.1175/2009JHM1192.1]
Tedesco, M., R. H. Reichle, A. Loew, T. Markus, and J. Foster. 2010. Dynamic Approaches for Snow Depth Retrieval From Spaceborne Microwave Brightness Temperature IEEE Trans. Geosci. Remote Sensing 48 (4):
1955-1967
[10.1109/TGRS.2009.2036910]
Crow, W. T., and R. H. Reichle. 2008. Comparison of adaptive filtering techniques for land surface data assimilation Water Resour. Res. 44 (8):
W08423
[10.1029/2008WR006883]
Zaitchik, B. F., M. Rodell, and R. H. Reichle. 2008. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin J. Hydrometeorol. 9 (3):
535-548
[10.1175/2007JHM951.1]
Reichle, R. H., W. T. Crow, and C. L. Keppenne. 2008. An adaptive ensemble Kalman filter for soil moisture data assimilation Water Resour. Res. 44 (3):
W03423
[10.1029/2007WR006357]
Koster, R., T. Bell, R. Reichle, M. Suarez, and S. Schubert. 2008. Using Observed Spatial Correlation Structures to Increase the Skill of Subseasonal Forecasts Mon. Wea. Rev. 136 (6):
1923-1930
[10.1175/2007MWR2255.1]
Reichle, R. H., R. D. Koster, P. Liu, et al. 2007. Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning Multichannel Microwave Radiometer (SMMR) J. Geophys. Res. 112 (D9):
D09108
[10.1029/2006JD008033]
De Lannoy, G. J., R. H. Reichle, P. R. Houser, V. R. Pauwels, and N. E. Verhoest. 2007. Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter Water Resour. Res. 43 (9):
W09410
[10.1029/2006WR005449]
Berg, A. A., J. S. Famiglietti, M. Rodell, et al. 2005. Development of a hydrometeorological forcing data set for global soil moisture estimation Int. J. Climatol. 25 (13):
1697-1714
[10.1002/joc.1203]
Crow, W. T., R. D. Koster, and R. H. Reichle. 2005. Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products Geophysical Research Letters 32 (24):
L24405
[10.1029/2005GL024889]
Koster, R. D., M. J. Suarez, P. Liu, et al. 2004. Realistic Initialization of Land Surface States: Impacts on Subseasonal Forecast Skill Journal of Hydrometeorology 5 (6):
1049-1063
[10.1175/JHM-387.1]
Walker, J. P., P. R. Houser, and R. H. Reichle. 2003. New Technologies Require Advances in Hydrologic Data Assimilation Eos 84 (49):
545, 551
Reichle, R. H., R. D. Koster, and S. M. Hassanizadeh. 2002. Land data assimilation with the ensemble Kalman filter: assessing model error parameters using innovations Computational Methods in Water Resources Vols 1 and 2 47 1387-1394
Reichle, R. H., D. B. McLaughlin, and D. Entekhabi. 2002. Hydrologic Data Assimilation with the Ensemble Kalman Filter Mon Wea Rev 130 103-114
Reichle, R. H., D. B. McLaughlin, and D. Entekhabi. 2001. Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications IEEE Transactions on Geosciences and Remote Sensing 39 1708-1718
[10.1109/36.942549]
Reichle, R. H., D. Entekhabi, and D. B. McLaughlin. 2001. Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach Water Resources Research 37 2353-2364
[10.1029/2001WR000475]
Reichle, R. H., W. Kinzelbach, and H. Kinzelbach. 1998. Effective parameters in heterogeneous and homogeneous transport models with kinetic sorption Water Resources Research 34 583-594
[10.1029/97WR03518]