Kato, S., T. J. Thorsen, S.-H. Ham, et al. 2022. Effect of Spectral Variability of Aerosol Optical Properties on Direct Aerosol Radiative Effect Frontiers in Remote Sensing 3
[10.3389/frsen.2022.904505]
Yue, Q., E. J. Fetzer, L. Wang, et al. 2022. Evaluating the consistency and continuity of pixel-scale cloud property data records from Aqua and SNPP (Suomi National Polar-orbiting Partnership) Atmospheric Measurement Techniques 15 (7):
2099-2123
[10.5194/amt-15-2099-2022]
Redemann, J., R. Wood, P. Zuidema, et al. 2021. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin Atmospheric Chemistry and Physics
[10.5194/acp-21-1507-2021]
Yuan, T., H. Song, R. Wood, et al. 2020. Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology Atmospheric Measurement Techniques 13 (12):
6989-6997
[10.5194/amt-13-6989-2020]
Meyer, K., S. Platnick, R. Holz, et al. 2020. Derivation of Shortwave Radiometric Adjustments for SNPP and NOAA-20 VIIRS for the NASA MODIS-VIIRS Continuity Cloud Products Remote Sensing 12 (24):
4096
[10.3390/rs12244096]
Mallet, M., F. Solmon, P. Nabat, et al. 2020. Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study Atmospheric Chemistry and Physics 20 (21):
13191-13216
[10.5194/acp-20-13191-2020]
Cochrane, S. P., K. S. Schmidt, H. Chen, et al. 2019. Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments Atmospheric Measurement Techniques 12 (12):
6505-6528
[10.5194/amt-12-6505-2019]
Ding, J., P. Yang, M. D. King, et al. 2019. A Fast Vector Radiative Transfer Model for the Atmosphere-Ocean Coupled System Journal of Quantitative Spectroscopy and Radiative Transfer 239 106667
[10.1016/j.jqsrt.2019.106667]
Peers, F., P. Francis, C. Fox, et al. 2019. Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 1: Method description and sensitivity Atmospheric Chemistry and Physics 19 (14):
9595-9611
[10.5194/acp-19-9595-2019]
Mallet, M., P. Nabat, P. Zuidema, et al. 2019. Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments Atmospheric Chemistry and Physics 19 (7):
4963-4990
[10.5194/acp-19-4963-2019]
Wang, C., S. Platnick, T. Fauchez, et al. 2019. An Assessment of the Impacts of Cloud Vertical Heterogeneity on Global Ice Cloud Data Records From Passive Satellite Retrievals Journal of Geophysical Research: Atmospheres
[10.1029/2018jd029681]
Witte, M. K., T. Yuan, P. Y. Chuang, et al. 2018. MODIS Retrievals of Cloud Effective Radius in Marine Stratocumulus Exhibit No Significant Bias Geophysical Research Letters 45 (19):
10,656-10,664
[10.1029/2018gl079325]
Rajapakshe, C., Z. Zhang, J. E. Yorks, et al. 2017. Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported Geophysical Research Letters
[10.1002/2017gl073559]
Ding, J., P. Yang, G. W. Kattawar, et al. 2017. Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals Journal of Quantitative Spectroscopy and Radiative Transfer 194 47-57
[10.1016/j.jqsrt.2017.03.025]
Yue, Q., B. H. Kahn, E. J. Fetzer, et al. 2017. On the response of MODIS cloud coverage to global mean surface air temperature Journal of Geophysical Research: Atmospheres 122 966-979
[10.1002/2016jd025174]
Werner, F., G. Wind, Z. Zhang, et al. 2016. Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS Atmospheric Measurement Techniques 9 (12):
5869-5894
[10.5194/amt-9-5869-2016]
Thompson, D. R., I. McCubbin, B. C. Gao, et al. 2016. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy Journal of Geophysical Research: Atmospheres 121 (15):
9174-9190
[10.1002/2016jd024999]
Zhang, Z., F. Werner, H.-M. Cho, et al. 2016. A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method Journal of Geophysical Research: Atmospheres 121 (12):
7007-7025
[10.1002/2016jd024837]
Hioki, S., P. Yang, B. A. Baum, et al. 2016. Degree of ice particle surface roughness inferred from polarimetric observations Atmos. Chem. Phys. 16 (12):
7545-7558
[10.5194/acp-16-7545-2016]
Wang, C., S. Platnick, Z. Zhang, K. Meyer, and P. Yang. 2016. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content J. Geophys. Res. Atmos. 121 (10):
5809-5826
[10.1002/2015jd024526]
Wang, C., S. E. Platnick, Z. Zhang, et al. 2016. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation J. Geophys. Res. Atmos. 121
[10.1002/2015jd024528]
Zhang, Z., K. Meyer, H. Yu, et al. 2016. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations Atmos. Chem. Phys. 16 (5):
2877-2900
[10.5194/acp-16-2877-2016]
Ding, J., P. Yang, R. E. Holz, et al. 2016. Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data Optics Express 24 (1):
620
[10.1364/oe.24.000620]
Meyer, K. G., and S. E. Platnick. 2015. Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS J. Geophys. Res. Atmos 120 (11):
5524–5547
[10.1002/2015JD023128]
Cho, H.-M., Z. Zhang, K. G. Meyer, et al. 2015. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans J. Geophys. Res.-Atmos 120 (9):
4132-4154
[10.1002/2015JD023161]
Fauchez, T., P. Dubuisson, C. Cornet, et al. 2015. Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry Atmospheric Measurement Techniques 8 (2):
633-647
[10.5194/amt-8-633-2015]
Liu, C., P. Yang, S. L. Nasiri, et al. 2015. A fast Visible Infrared Imaging Radiometer Suite simulator for cloudy atmospheres J. Geophys. Res. Atmos. 120 (1):
240-255
[10.1002/2014jd022443]
Meyer, K. G., P. Yang, and B.-C. Gao. 2007. Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data Atmospheric Research 85 171-182
[10.1016/j.atmosres.2006.09.009]
Meyer, K. G., P. Yang, and B.-C. Gao. 2007. Ice Cloud Optical Depth From MODIS Cirrus Reflectance IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 4 (3):
471-474
[10.1109/LGRS.2007.897428]
Gao, B.-C., K. G. Meyer, and P. Yang. 2004. A New Concept on Remote Sensing of Cirrus Optical Depth and Effective Ice Particle Size Using Strong Water Vapor Absorption Channels
Near 1.38 and 1.88 µm IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 42 (9):
1891-1899
[10.1109/TGRS.2004.833778]
Meyer, K. G., P. Yang, and B.-C. Gao. 2004. Optical Thickness of Tropical Cirrus Clouds Derived
From the MODIS 0.66- and 1.375-µm Channels IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 42 (4):
833-841
[10.1109/TGRS.2003.818939]