Kahn, R. A., E. Andrews, C. A. Brock, et al. 2023. Reducing Aerosol Forcing Uncertainty By Combining Models with Satellite and Within‐the‐Atmosphere Observations: A Three‐Way Street Reviews of Geophysics
[10.1029/2022rg000796]
Kopacz, M., V. Breeze, S. Kondragunta, et al. 2023. Global Atmospheric Composition Needs from Future Ultraviolet–Visible–Near-Infrared (UV–Vis–NIR) NOAA Satellite Instruments Bulletin of the American Meteorological Society 104 (3):
E623-E630
[10.1175/bams-d-22-0266.1]
LeBlanc, S. E., M. Segal-Rozenhaimer, J. Redemann, et al. 2022. Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties Atmospheric Chemistry and Physics 22 (17):
11275-11304
[10.5194/acp-22-11275-2022]
Xu, F., L. Gao, J. Redemann, et al. 2021. A Combined Lidar-Polarimeter Inversion Approach for Aerosol Remote Sensing Over Ocean Frontiers in Remote Sensing 2 (2):
Yasunari, T. J., H. Nakamura, K.-M. Kim, et al. 2021. Relationship between circum-Arctic atmospheric wave patterns and large-scale wildfires in boreal summer Environmental Research Letters 16 (6):
064009
[10.1088/1748-9326/abf7ef]
Redemann, J., R. Wood, P. Zuidema, et al. 2021. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin Atmospheric Chemistry and Physics
[10.5194/acp-21-1507-2021]
Pérez-Ramírez, D., D. N. Whiteman, I. Veselovskii, et al. 2020. Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength Lidar Journal of Quantitative Spectroscopy and Radiative Transfer 246 106932
[10.1016/j.jqsrt.2020.106932]
Ukhov, A., S. Mostamandi, N. Krotkov, et al. 2020. Study of SO Pollution in the Middle East Using MERRA‐2, CAMS Data Assimilation Products, and High‐Resolution WRF‐Chem Simulations Journal of Geophysical Research: Atmospheres 125 (6):
[10.1029/2019jd031993]
Fu, G., O. Hasekamp, J. Rietjens, et al. 2020. Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm Atmospheric Measurement Techniques 13 553-573
[10.5194/amt-13-553-2020]
Bian, H., K. Froyd, D. M. Murphy, et al. 2019. Observationally constrained analysis of sea salt aerosol in the marine atmosphere Atmospheric Chemistry and Physics 19 10773-10785
[10.5194/acp-19-10773-2019]
Pérez-Ramírez, D., D. N. Whiteman, I. Veselovskii, et al. 2019. Retrievals of aerosol single scattering albedo by multiwavelength lidar measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns Remote Sensing of Environment 222 144-164
[10.1016/j.rse.2018.12.022]
Xian, P., J. S. Reid, E. J. Hyer, et al. 2019. Current State of the global operational aerosol multi‐model ensemble: an update from the International Cooperative for Aerosol Prediction (ICAP) Quarterly Journal of the Royal Meteorological Society 145 (S1):
176-209
[10.1002/qj.3497]
Hu, L., C. A. Keller, M. S. Long, et al. 2018. Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM) Geoscientific Model Development 11 (11):
4603-4620
[10.5194/gmd-11-4603-2018]
Benedetti, A., J. S. Reid, P. Knippertz, et al. 2018. Status and future of numerical atmospheric aerosol prediction with a focus on data requirements Atmospheric Chemistry and Physics 18 (14):
10615-10643
[10.5194/acp-18-10615-2018]
Choi, S., N. Theys, R. J. Salawitch, et al. 2018. Link Between Arctic Tropospheric BrO Explosion Observed From Space and Sea-Salt Aerosols From Blowing Snow Investigated Using Ozone Monitoring Instrument BrO Data and GEOS-5 Data Assimilation System Journal of Geophysical Research: Atmospheres 123
[10.1029/2017jd026889]
Eck, T. F., B. N. Holben, J. S. Reid, et al. 2018. Observations of the Interaction and Transport of Fine Mode Aerosols with Cloud and/or Fog in Northeast Asia from Aerosol Robotic Network (AERONET) and Satellite Remote Sensing Journal of Geophysical Research: Atmospheres
[10.1029/2018JD028313]
Veselovskii, I., P. Goloub, T. Podvin, et al. 2018. Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations Atmospheric Measurement Techniques 11 (2):
949-969
[10.5194/amt-11-949-2018]
Nielsen, J. E., S. Pawson, A. Molod, et al. 2017. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model Journal of Advances in Modeling Earth Systems
[10.1002/2017ms001011]
Yasunari, T. J., M. Niwano, Y. Fujiyoshi, et al. 2017. An Unreported Asian Dust (Kosa) Event in Hokkaido, Japan: A Case Study of 7 March 2016 SOLA 13 (0):
96-101
[10.2151/sola.2017-018]
Provençal, S., V. Buchard, A. M. da Silva, R. Leduc, and N. Barrette. 2017. Evaluation of PM surface concentrations simulated by Version 1 of NASA's MERRA Aerosol Reanalysis over Europe Atmospheric Pollution Research 8 (2):
374-382
[10.1016/j.apr.2016.10.009]
Norris, P. M., and A. M. da Silva. 2016. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 2: Sensitivity tests and results Q.J.R. Meteorol. Soc. 142 (699):
2528-2540
[10.1002/qj.2844]
Norris, P. M., and A. M. da Silva. 2016. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method Q.J.R. Meteorol. Soc. 142 (699):
2505-2527
[10.1002/qj.2843]
Theurich, G., C. DeLuca, T. Campbell, et al. 2016. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability Bulletin of the American Meteorological Society 97 (7):
1229-1247
[10.1175/bams-d-14-00164.1]
Lu, C.-H., A. da Silva, J. Wang, et al. 2016. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP Geosci. Model Dev. 9 (5):
1905-1919
[10.5194/gmd-9-1905-2016]
Yasunari, T. J., P. R. Colarco, W. K. Lau, et al. 2016. Total dust deposition flux during precipitation in Toyama, Japan, in the spring of 2009: A sensitivity analysis with the NASA GEOS-5 Model Atmospheric Research 167 298–313
[10.1016/j.atmosres.2015.08.005]
Kouatchou, J., A. Da Silva, and A. Oloso. 2015. SIVO-PyD: A Python Distribution for Scientific Computing Visualization NASA Tech Brief GSC-16530-1
Kishcha, P., A. da Silva, B. Starobinets, et al. 2015. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean International Journal of Remote Sensing 36 (13):
3423-3445
[10.1080/01431161.2015.1060646]
Huang, M., K. W. Bowman, G. R. Carmichael, et al. 2015. Improved western U.S. background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations J. Geophys. Res. Atmos. 120 (8):
3572-3592
[10.1002/2014jd022993]
Long, M. S., R. Yantosca, J. E. Nielsen, et al. 2015. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models Geosci. Model Dev. 8 (3):
595-602
[10.5194/gmd-8-595-2015]
Sessions, W. R., J. S. Reid, A. Benedetti, et al. 2015. Corrigendum to "Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME)" published in Atmos. Chem. Phys., 15, 335–362, 2015 Atmos. Chem. Phys. 15 (5):
2533-2534
[10.5194/acp-15-2533-2015]
Bingqi Yi, Ping Yang, A. Dessler, and A. M. da Silva. 2015. Response of Aerosol Direct Radiative Effect to the East Asian Summer Monsoon IEEE Geosci. Remote Sensing Lett. 12 (3):
597-600
[10.1109/lgrs.2014.2352630]
Barre, J., D. Edwards, H. Worden, A. M. Da Silva, and W. A. Lahoz. 2015. On the feasibility of monitoring Carbon Monoxide in the lower troposphere from a constellation of Northern Hemisphere geostationary satellites. (Part 1) Atmos. Environ 113 63-77
[10.1016/j.atmosenv.2015.04.069]
Saide, P., D. A. Peterson, A. da Silva, et al. 2015. Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion Geophys. Res. Lett 42 3609-3618
[10.1002/2015GL063737]
Sessions, W., J. S. Reid, A. Benedetti, et al. 2015. Development towards a global operational aerosol consensus: Basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME) Atmos. Chem. Phys 15 335-362
[10.5194/acp-15-335-2015]
Saide, P. E., S. N. Spak, R. B. Pierce, et al. 2015. Central American biomass burning smoke can increase tornado severity in the U.S Geophys. Res. Lett 42 956-965
[10.1002/2014GL062826]
Zhang, F., J. Wang, C. M. Ichoku, et al. 2014. Sensitivity of mesoscale modeling of smoke direct radiative effect to the emission inventory: a case study in northern sub-Saharan African region Environmental Research Letters 9 (7):
075002 (14 pp)
[10.1088/1748-9326/9/7/075002]
Keller, C. A., M. S. Long, R. M. Yantosca, et al. 2014. HEMCO v1.0: a versatile, ESMF-compliant component for calculating emissions in atmospheric models Geoscientific Model Development 7 (4):
1409-1417
[10.5194/gmd-7-1409-2014]
Kishcha, P., A. M. Da Silva, B. Starobinets, and P. Alpert. 2014. Air pollution over the Ganges basin and northwest Bay of Bengal in the early postmonsoon season based on NASA MERRAero data J. Geophys. Res. Atmos. 119 (3):
1555-1570
[10.1002/2013JD020328]
Yasunari, T., W. K. Lau, P. R. Colarco, et al. 2014. The GOddard SnoW Impurity Module (GOSWIM) for the NASA GEOS-5 Earth System Model: Preliminary Comparisons with Observations in Sapporo, Japan SOLA 10 (0):
50-56
[10.2151/sola.2014-011]
Gupta, P., M. Khan, A. M. Da Silva, and F. Patadia. 2013. MODIS aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring Atmospheric Pollution Research 4 (1):
43-52
[10.5094/APR.2013.005]
Palmer, P., M. Parrington, J. Lee, S. Pawson, and A. da Silva. 2013. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview Atmos. Chem. Phys. 13 (13):
6239-6261
[10.5194/acp-13-6239-2013]
Guan, B., D. E. Waliser, J.-L. F. Li, and A. da Silva. 2013. Evaluating the impact of orbital sampling on satellite-climate model comparisons J. Geophys. Res. Atmos. 118 (2):
355-369
[10.1029/2012JD018590]
Randles, C. A., P. R. Colarco, and A. M. Da Silva. 2013. Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: aerosol-climate interactions due to prognostic versus prescribed aerosols J. Geophys. Res. Atmos. 118 (1):
149–169
[10.1029/2012JD018388]
Choi, S., Y. Wang, R. J. Salawitch, et al. 2012. Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC Atmos. Chem. Phys. 12 (3):
1255-1285
[10.5194/acp-12-1255-2012]
Van Donkelaar, A., R. V. Martin, R. C. Levy, et al. 2011. Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010 Atmospheric Environment 45 (34):
6225-6232
[10.1016/j.atmosenv.2011.07.068]
Rienecker, M. M., M. J. Suarez, R. Gelaro, et al. 2011. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications J. Climate 24 (14):
3624-3648
[10.1175/JCLI-D-11-00015.1]
Salawitch, R. J., T. Canty, T. Kurosu, et al. 2010. A new interpretation of total column BrO during Arctic spring Geophysical Research Letters 37 (21):
L21805
[10.1029/2010GL043798]
Wong, S., A. E. Dessler, N. M. Mahowald, P. R. Colarco, and A. da Silva. 2008. Long-term variability in Saharan dust transport and its link to North Atlantic sea surface temperature Geophysical Research Letters 35 (7):
[10.1029/2007gl032297]
Zhou, S., V. Balaji, C. A. Cruz, et al. 2007. Cross-organization interoperability experiments of weather and climate models with the Earth System Modeling Framework Concurrency and Computation: Practice and Experience 19 (5):
583–592
[10.1002/cpe.1120]
Joiner, J., E. Brin, R. Treadon, et al. 2007. Effects of data selection and error specification on the assimilation of AIRS data Quart J Roy Meteor Soc 133 (622):
181-196
[10.1002/qj.8]
Norris, P. M., and A. M. da Silva. 2007. Assimilation of Satellite Cloud Data into the GMAO Finite-Volume Data Assimilation System Using a Parameter Estimation Method. Part I: Motivation and Algorithm Description J. Atmos. Sci. 64 (11):
3880-3895
[10.1175/2006JAS2046.1]
Bosilovich, M. G., J. Radakovich, A. M. Da Silva, R. Todling, and F. Verter. 2007. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System Journal of the Meteorological Society of Japan 85A
Tan, W. W., M. A. Geller, S. Pawson, and A. da Silva. 2004. A case study of excessive subtropical transport in the stratosphere of a data assimilation system J. Geophys. Res. 109 (D11):
D11102
[10.1029/2003JD004057]
Yang, R., S. E. Cohn, A. da Silva, J. Joiner, and P. Houser. 2003. Tangent linear analysis of the Mosaic land surface model J Geophys Res 108 (D2):
12-1 - 12-16
Dee, D. P., L. Rukhovets, R. Todling, A. M. da Silva, and J. W. Larson. 2001. An adaptive buddy check for observational quality control Quarterly Journal of the Royal Meteorological Society 127 (577):
2451-2471
[10.1002/qj.49712757714]
Hou, A. Y., S. Zhang, A. M. da Silva, et al. 2001. Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave instruments Bull Amer Meteor Soc 82 659-679
Cohn, S. E., A. Da Silva, J. Guo, M. Sienkiewicz, and D. Lamich. 1998. Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* Monthly Weather Review 126 (11):
2913--2926