What’s Eating Ozone? Thermal Reactions between SO₂ and O₃ and Implications for Icy Environments

Mark Loeffler, R. L. Hudson, P. A. Gerakines

NASA Goddard Space Flight Center

Background

• Surface composition of icy objects can be altered by radiolysis/photolysis
• Laboratory studies show radiolysis/photolysis easily forms ozone (O₃) in many different ices
• Few detections of O₃ via remote sensing
• Why the difference?
 – Could O₃ react with other compounds in the ice?

Where to Start?

• Radiolysis prevalent on the Jovian moons
• Condensed O₃ has been detected on Ganymede, Callisto, Europa
 – O₃ only detected on Ganymede
• Sulfur compounds are present on most Jovian satellites
 – Investigate whether O₃ and SO₂ react in H₂O-ice under relevant conditions

Approach

• Grow H₂O + SO₂ + O₃ (75-21-4) mixtures at 50 K
• Warm ices, while monitoring with IR spectroscopy
• To synthesize O₃
 • Strike ~100 Torr of O₂ with Tesla coil
 • Trap O₃ in liquid N₂

O₃ Experiments

IR Spectrum

H₂O + SO₂ + O₃ ice sample

Gold Mirror Surface (5 cm²)

Proton radiation source delivers ~1 MeV H⁺

Mass Spectrometer

10 - 300 K ~ 10⁻⁴ torr

Results
IR Spectra During Warming

- $H_2O + SO_2 + O_3$ ice
 - Deposit at 50 K
 - Warm to 120 K (1 K/ min)
- Main Sulfur Products
 - HSO_3^- (80 – 100 K)
 - $S_2O_5^{2-}$ (80 – 100 K)
 - HSO_4^- (> 100 K)

Decrease in Ozone vs. Temp

- Reaction begins near 100 K
- Rate increases with temperature
- At 130 K, O_3 reaches noise level in a few hours
- Temperatures are well within those observed for Jovian icy satellites

Implications for Callisto

- Condensed O_2 on trailing side but no O_3
- SO_2 is present but more abundant on leading side
- O_3 on trailing side would be consumed by SO_2
 - Lack of O_3 on Callisto
 - Lower abundance of SO_2 on trailing side

Summary and More Implications

- O_3 and SO_2 react readily above 100 K
 - They won’t be found in same vicinity
- Callisto
 - Lack of ozone in trailing hemisphere
 - Spatial distribution of SO_2
- Possibly relevant to other icy bodies
 - Mass spectrometer on Rosetta detected O_3 in comet coma but no O_3
 - No O_3 detected in ISM and lower than expected abundance of identifiable sulfur compounds
- Future work will focus on whether other compounds similarly reactive with ozone

Acknowledgments

- Financial support from NASA programs
 NASA Solar System Workings
 Outer Planets Research
 NASA Astrobiology Institute

http://science.gsfc.nasa.gov/691/cosmicice/