Amino acids generated from hydrated Titan tholins: Comparison with Miller–Urey electric discharge products

H. James Cleaves II a,b,c,d,e, Catherine Neish e, Michael P. Callahan f, Eric Parker d,g, Facundo M. Fernández d,g, Jason P. Dworkin f

a Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540, USA
b Blue Marble Space Institute for Science, Washington, DC 20008, USA
c Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA
d Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
e School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
f Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30332, USA
g Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540, USA

A R T I C L E I N F O

Article history:
Received 6 December 2013
Revised 21 April 2014
Accepted 22 April 2014
Available online 2 May 2014

Keywords:
Atmospheres, chemistry
Astrobiology
Titan
Organic chemistry
Prebiotic chemistry

A B S T R A C T

Various analogues of Titan haze particles (termed ‘tholins’) have been made in the laboratory. In certain geologic environments on Titan, these haze particles may come into contact with aqueous ammonia (NH₃) solutions, hydrolyzing them into molecules of astrobiological interest. A Titan tholin analogue hydrolyzed in aqueous NH₃ at room temperature for 2.5 years was analyzed for amino acids using highly sensitive ultra-high performance liquid chromatography coupled with fluorescence detection and time-of-flight mass spectrometry (UHPLC-FD/ToF-MS) analysis after derivatization with a fluorescent tag. We compare here the amino acids produced from this reaction sequence with those generated from room temperature Miller–Urey (MU) type electric discharge reactions. We find that most of the amino acids detected in low temperature MU CH₄/N₂/H₂O electric discharge reactions are generated in Titan simulation reactions, as well as in previous simulations of Triton chemistry. This argues that many processes provide very similar mixtures of amino acids, and possibly other types of organic compounds, in disparate environments, regardless of the order of hydration. Although it is unknown how life began, it is likely that given reducing conditions, similar materials were available throughout the early Solar System and throughout the universe to facilitate chemical evolution.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

It is generally believed that life on Earth originated from environmentally supplied organic precursors (Oparin, 1924; Haldane, 1929; Miller and Orgel, 1974; Cleaves, 2008). A variety of possible sources have been invoked for such an “Oparin–Haldane” type origin of life, including atmospheric synthesis (Miller, 1953; Schlesinger, 1983a, 1983b), extraterrestrial delivery from meteorites and comets (Chyba and Sagan, 1992), and geothermal synthesis (Wächtershäuser, 1988; Steele et al., 2012).

Although the composition of the atmosphere during the time life originated on Earth is debated (Tian et al., 2005; Zahle et al., 2010; Trail et al., 2011), other bodies in the Solar System have atmospheres which may be more conducive to atmospheric organic synthesis. One example is Saturn’s moon Titan, which has an upper atmosphere consisting of ~98% N₂ and 2% CH₄, along with minor amounts of other species including H₂, HCN, CO and organics such as ethane, ethylene, acetylene and cyanocetylene (Niemann et al., 2005). However, due to Titan’s low temperature (~95 K), most of its water is present as ice in the crust and mantle, acting similar to bedrock on the Earth. In contrast, the early Earth was likely above the freezing point of water for long periods of time, with possible early excursions above and below the conditions at which water can exist as a liquid (Kasting and Pollack, 1984; Bada et al., 1994).

Titan’s atmosphere is exposed to various types of energetic processing, producing higher molecular weight organic polymers. When produced under laboratory conditions, these polymers are collectively known as tholins (Sagan and Khare, 1979). Similar materials have also been suggested to be formed in the atmospheres of Triton and Pluto (McDonald et al., 1994). On Titan, it has been proposed that as the organic haze particles precipitate from the
atmosphere they may come into contact with eutectic brines highly enriched in \(\text{NH}_3\), in short-lived ‘oases’ of liquid water formed through impact melting or cryovolcanism (Thompson and Sagan, 1992). These interactions could lead to reactions producing molecules of biological interest, for example amino acids and nucleobases (Neish et al., 2008, 2009, 2010).

The energetic processing of Titan’s present atmosphere is likely somewhat different than that which acted upon the primitive Earth’s (Chyba and Sagan, 1992), or that which contributed to interstellar ice grain organic formation (Meierhenrich et al., 2005; Öberg et al., 2009). For example, the Earth has always received a significantly higher flux of solar radiation than Titan, and the flux in interstellar environments is attenuated distinctly due to the differences in path lengths, composition and density of the medium. However, it was noted almost 30 years ago that electric discharge reaction products and organic molecules found in carbonaceous chondrites are very similar with respect to their amino acid contents (Wolman et al., 1972). The inference is that there is some similarity in the mechanism of formation in both cases (Peltzer et al., 1984), for example via Strecker-like synthesis from small reactive organic precursors such as ketones or aldehydes (Miller, 1957). Analytical studies since the 1970s have revealed a much richer molecular complexity in many carbonaceous chondrites (Schmitt-Kopplin et al., 2010; Burton et al., 2012). It is worth bearing in mind the various degrees of post-accretional processing the natural samples have undergone over \(\sim 4.5\) Ga compared to the laboratory samples, and that, with few exceptions (Johnson et al., 2008; Vuitton et al., 2010), laboratory samples have not received the same degree of scrutiny.

A number of laboratories have modeled the synthesis of Titan haze particles using \(\text{CH}_4/\text{N}_2\) gas mixtures at low temperature using various energy sources, such as electric discharge and UV light (Ferris, 1981; Khare et al., 1986; Thompson et al., 1991; McDonald et al., 1994; Ehrenfreund et al., 1995; Kobayashi et al., 1997; Neish et al., 2008; Cable et al., 2012). A subset of these laboratories also investigated the products of tholin hydrolysis, which is the subject of this paper.

There are numerous variables involved in these simulations which could render comparison difficult, for example the conditions under which the tholins are synthesized, and their products processed and analyzed (Scheme 1); nevertheless, as we will show, the detected products remain remarkably similar despite these variables.

For example, during tholin synthesis, a wide-range of ratios of \(\text{N}_2\) to \(\text{CH}_4\) (from \(\sim 1000:1\) to \(1:1\)), total gas pressures (from \(\sim 400\ \text{mmHg}\) to \(1\ \text{mmHg}\)) and reaction temperature (from 296 K to 195 K) have been used. Some use flow reactors while others use static ones. Workup has ranged from high temperature (\(>100\ °\text{C}\)) aqueous acid to extremely low temperature (\(\sim -20\ °\text{C}\)) aqueous base over widely varying time ranges. Lastly, a variety of analytical techniques have been used to measure the amino acid products of these reactions.

A short historical note regarding the terminology used here is useful for clarifying this discussion. While there was some experimental work on the generation of discrete low molecular weight organic compounds, such as amino acids, using electric discharges acting on various gas mixtures prior to Miller’s pioneering 1953 publication (Miller, 1953) (see for example, Lōb, 1913), no formal name was applied by Miller or his predecessors to the complex organic mixtures which result from such experiments. It should be stressed that Miller’s experiments were produced in the context of a reducing early Earth atmosphere, which adds a level of intentional contextualization to the materials produced. Furthermore, Miller recognized that discrete organic compounds were isolated from hydrolysis of the products of the electric discharge reaction, which could include a mixture of those synthesized directly in the discharge, those made in aqueous phase reactions from intermediates produced in the gas phase, and those derived from hydrolysis of larger more complex organic polymers produced in either phase. Collectively these were termed “electric discharge products”.1

Thus the principle practical distinctions between MU electric discharge products and tholins, are that MU products can be considered as alternatively (1) organic materials derived from the action of electric discharges acting on reduced gases, (2) organic materials derived from energetic (be it via electric discharge, UV, or high energy particle) processing of gas mixtures (reducing or otherwise) simulating planetary atmospheric chemistry, or (3) chemistry as described in (2) in the presence of a liquid phase. Tholins, in contrast are generally considered to be the resulting non-volatile organic products derived from reduced gases via any type of energetic processing simulating Solar System environments at temperatures below the freezing point of water. In both cases, the materials are considered to be precursors which require some work-up for the release of biomolecules, and in neither case is the potential importance of the molecular weight of the precursors considered significant, i.e. either or both might liberate small molecules in water, such as HCN, \(\text{NH}_3\) and aldehydes and ketones, which may undergo other types of secondary reactions, such as the Strecker reaction, to give the final observed small molecule products such as amino acids.

The salient points we wish to make are that there is considerable similarity between tholins and MU discharge products when derived from methane and molecular nitrogen, with respect to the amino acids, and potentially other products, produced regardless of the temperature of reaction or the presence of liquid water during energetic processing. This suggests that the gas-phase chemistry of non-oxygen-containing species dominate the amino acid synthesis pathways, and that as these are highly transient species the temperature may be of little importance (Khare et al., 1984). This point may have considerable consequence for the types of organic materials which can be expected to be delivered to almost any reducing planetary environment throughout the universe.

Among the various other studies of these materials (Pernot et al., 2010; Vuitton et al., 2010), it has often been of interest to measure the amino acids produced from these simulations. As mentioned above, the paucity of water or other O-containing

1 It was not until Sagan and co-workers recognized the potential parallels between MU type reactions and the chemistry of the atmospheres of the jovian planets and their satellites that the term “tholin” was coined, which Sagan derived from the Greek root “tholos” (“"tholos"”). It appears Sagan intentionally chose a Greek root which could be alternatively interpreted as being derived from the word meaning “muddy” or “unclear”, referencing both the color and molecular complexity and heterogeneity of these materials, as well as from the root meaning “dome”, referencing their astronomical significance. In a personal communication from Miller to Sagan discussing Sagan’s suggested name, Miller, tongue-in-cheek, suggested “tholin” was a poor choice of terminology, partly because the English voiceless dental fricative “\(\theta\)”; would be difficult to pronounce in German (where it would be pronounced as “\(\delta\)”) (Miller, personal communication to HJC).
species in Titan's atmosphere means that the carbonyl and side chain oxygen must either be derived from a step simulating some sort of aqueous surface chemistry, or via a laboratory hydrolysis step.

Recent advances in mass spectrometry have allowed unprecedented high resolution accurate mass analysis of complex prebiotic mixtures, for example FT-ICR–MS studies of the Murchison meteorite and Titan tholins (Sarker et al., 2003; Pernot et al., 2010; Schmitt-Kopplin et al., 2010). Amino acids have been detected in several studies modeling these types of processes, though the techniques used have variable sensitivity for confident identification and quantification. For example, Khare et al. (1984) detected 16 amino acids using GC–MS, while McDonald et al. (1994) found a partially overlapping set of 15 using HPLC with UV detection. More recently, Neish et al. (2010) found species with the exact masses of 18 of the coded amino acids not containing sulfur using FT-ICR–MS, but only four of these were confirmed as the correct structural isoform. 18 of the non-sulfur coded amino acids were detected using FT-ICR–MS, and mass spectrometry for the analysis of concentrated aqueous solutions of NH₄OH (EMD Chemicals Inc.) and doubly distilled water was used to characterize the amino acids. These three reagents were prepared using Schmitt-Kopplin et al., 2010
to model these types of processes, though the techniques used have variable sensitivity for confident identification and quantification. The importance of the differences and similarities is discussed here.

2. Materials and methods

2.1. Reagents

All reagents used in the analyses reported here were purchased from Fisher Scientific or Sigma–Aldrich, and were of reagent grade or higher unless otherwise stated. All tools used to handle the samples were cleaned using Millipore Direct Q10 H₂O before wrapping them in aluminum foil and heating them in air overnight at 500 °C.

2.2. Titan tholins

Titan tholins were generated as described in Neish et al. (2009) by subjecting a mixture of 2% CH₄ and 98% N₂ to an AC electrical discharge at a pressure of 880 Pa and 195 K in a glass reaction vessel. 50 mg of tholins were dissolved in 2 mL of acetonitrile, and 100 μL of this solution was further diluted into 2 mL of a 1:1 mixture of 14 N aqueous NH₄OH (EMD Chemicals Inc.) and doubly deionized water. This solution was allowed to sit at room temperature for 2.5 years. As this sample did not contain significant amounts of inorganic salts it was derivatized and analyzed directly after hydrolysis (i.e. without desalting via IEC). However, we found that it was helpful to include a room temperature vacuum drying step prior to derivatization to remove excess NH₃, which often led to a large derivatized NH₃ peak which interfered with analysis.

2.3. Miller–Urey electric discharge polymers

Miller–Urey electric discharge polymers were generated as described in Ring et al. (1972), except the ammonia buffer was replaced with a 0.225M sodium bicarbonate buffer adjusted to pH 8.7 which was degassed prior to introduction of the gas mixture. These were analyzed after desalting by Ion-Exchange Chromatography – IEC as described in Johnson et al. (2008) both directly and after vapor phase acid hydrolysis.

Table 1 shows a comparison of previously reported results using different methods of synthesis and processing.

2.4. Standard analysis

Stock amino acid solutions (∼10⁻³ M) were produced by mixing individual amino acid powders (97–99% purity) with mQH₂O. Three reagents were prepared to derivatize the samples for analyses by a Waters ACQUITY UPLC and fluorescence detector and a Waters LCT Premier time-of-flight mass spectrometer (UHPLC-FD/ToF-MS): (1) 0.4 M sodium borate (pH 9.4), (2) 0.1 M hydrazine hydrate, and (3) OPA/NAC, a fluorescent reagent used to tag primary amino groups. These three reagents were prepared using the methods detailed in Glavin et al. (2006). We had available as standards the 18 non-sulfur-containing coded amino acids, as well as various others including DL-α-hydroxymethylalanine, DL-α-hydroxymethylserine (α-HMS), β-hydroxyaspartic acid, DL ornithine, DL-α-amino adipic acid, DL homoserine, DL-2-methylglutamic acid and DL isoserine.

The ammonium formate buffer used for UHPLC-FD–ToF-MS analyses was made by titrating 50 mM formic acid to pH 8 with NH₄OH and adding methanol to a final concentration of 8 vol.%.

2.5. LC-FD–ToF-MS analysis

Sample extracts were analyzed by LC-FD/ToF-MS, as described in Johnson et al. (2008). Sample extracts were prepared as described above and derivatized with the following modification. The samples were derivatized for 1 min after which the reaction was quenched with 75 μL of hydrazine. Samples were then immediately placed into the LC-FD/ToF-MS autosampler and injected. Details of the ToF-MS settings and the amino acid quantification methods used for these analyses are detailed elsewhere (Glavin et al., 2006). The LC-FD–ToF-MS technique had a detection limit in the low femtomole range for amino acids.

Products were identified based on three criteria: (1) the fact that they must be amine-functional group containing molecules to produce fluorescence signals, (2) the correspondence of their chromatographic retention time with that of a known standard, and (3) their protonated molecular (parent) ions in the mass spectrum.

3. Results and discussion

Examination of the chromatograms obtained reveals a complex suite of fluorescent products (Fig. 1). These should contain primary amino groups as to be fluorescent given the excitation and emission wavelengths should require the presence of an OPA tag. However, in the case of samples which were not subjected to IEC there may also be other untagged compounds present in these chromatograms which are inherently fluorescent under these conditions.

Closer examination of this data reveals even greater amine diversity (Fig. 1A, middle trace, Fig. 1B/C, top traces). Zooming in further on the baseline an even larger diversity of amines is noticeable (Fig. 1A, top trace). The diversity is almost fractal, and its visualization may be limited by chromatographic peak capacity. The baseline complexity of the Titan tholin chromatogram is not completely mirrored in the MU samples, however some of this may be due to volatile components lost during the IEC and workup of the MU samples such as small primary amines, and others may be inherently fluorescent molecules which are not retained by IEC (Hodyss et al., 2004).
Table 1
Comparison of the various experimental conditions and analytical techniques which have been used to study MU reaction products and Titan tholins.

<table>
<thead>
<tr>
<th>Study</th>
<th>MU – NH₃/aq²³⁴</th>
<th>MU – no NH₃¹⁴</th>
<th>Titan tholin³⁵⁶⁷</th>
<th>Titan tholin³⁵⁶⁷</th>
<th>Triton tholin¹</th>
<th>Titan tholin³⁵⁶⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas mixture</td>
<td>N₂ (200), CH₄ (200), H₂O (14)</td>
<td>N₂ (200), CH₄ (200), H₂O (14)</td>
<td>N₂ (6.3), CH₄ (0.13)</td>
<td>N₂ (0.135), CH₄ (0.015)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Solution phase²</td>
<td>0.0675 M NH₄Cl, pH 8.7</td>
<td>0.225 M NaIC₅O₄, pH 8.7</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Energy source</td>
<td>Electric discharge</td>
<td>Electric discharge</td>
<td>Electric discharge</td>
<td>Electric discharge</td>
<td>Electric discharge</td>
<td>Electric discharge</td>
</tr>
<tr>
<td>Experiment temperature</td>
<td>298 K</td>
<td>298 K</td>
<td>Gas phase: 195 K</td>
<td>298 K</td>
<td>298 K</td>
<td>170 K</td>
</tr>
<tr>
<td>Workup</td>
<td>3 N HCl hydrolysis</td>
<td>373 K, 24 h</td>
<td>Straight/6 N HCl vapor hydrolysis 373 K, 24 h</td>
<td>15 wt% aq. NH₃ pH ~ 11.5, 253 K</td>
<td>6 N HCl 373 K, 20 h IEC</td>
<td>25 wt% aq. NH₃, 253 K</td>
</tr>
<tr>
<td>Derivatization</td>
<td>OPA/NAC</td>
<td>OPA/NAC</td>
<td>OPA/NAC</td>
<td>OPA/NAC</td>
<td>OPA/NAC</td>
<td>OPA/NAC</td>
</tr>
<tr>
<td>Analysis</td>
<td>GC–MS</td>
<td>GC–MS</td>
<td>GC–MS</td>
<td>GC–MS</td>
<td>GC–MS</td>
<td>GC–MS</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a,b</td>
<td>As reported in Ring et al. (1972) and Wolman et al. (1972).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c,d</td>
<td>This paper.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>This paper, also reported in Neish et al. (2010).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>As reported in Khare et al. (1984).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>As reported in McDonald et al. (1994).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>As reported in Poch et al. (2012).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>If present, exposed to gas during energetic gas processing.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>Initial pH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examination of the extracted ion chromatograms (EICs) allows more confident identification of these amino acids, including their enantiomers (Fig. 2).

Among the coded amino acids detected in the tholin sample were glycine (gly), DL-alanine (ala), DL-serine (ser), DL-aspartic acid (asp), DL-glutamic acid (glu), DL-asparagine (asn) and DL-glutamine (glu). Among the non-coded amino acids detected in the tholin sample were DL-isoserine (iser), β-alanine (βala), γ-amino-butyric acid (γaba), DL-β-amino-butyric acid (βaba), α-aminoisobutyric acid (αaiab), DL-α-amino-butyric acid (αaba) and DL-isovaline (ival). Among the coded amino acids not detected within the detection limit of this analysis were valine (val), leucine (val), isoleucine (ile), histidine (his), arginine (arg), phenylalanine (phe), tyrosine (tyr), tryptophan (trp) and lysine (lys) (Fig. 3). These results show some similarities to those of Neish et al. (2010), who detected Asn, Asp, Glu, and Gin in the sample, but lacked the capability to detect species as small as Gly, Ala, and Ser.

Gln, Asn and Trp are not typically detected after high temperature (100 °C) acid hydrolysis, due to their hydrolytic instability (Wong and Bronskill, 1979), which explains their scarcity in the acid hydrolyzed MU samples. However Asn and Gln survive the low-temperature hydrolysis conditions to which the Titan tholin was exposed, and the hot water hydrolysis conditions in the case of the MU sample. The failure to detect the others could be due to their being present in quantities below the detection limit of our analysis or their absence. This work emphasizes the importance of chromatographic analyses beyond the simple infusion and identification of the exact mass of a species through FT-ICR-MS, since isoaromatic structural isomers may be present. For example, in the case of His, we observe what appears to be an enantiomeric pair, suggesting this species shares the molecular formula of His, one stereocenter, and a single primary amine group (or it would derivatize twice, giving it a different parent mass), but likely also one free carboxyl group (otherwise it would not elute on the time-scale observed), though many other primary amine-containing structural isomers are possible. This agrees with the results of Neish et al. (2010), who found evidence for a structural isomer of His with a different MS/MS fragmentation pattern than the pure substance.

Comparison of peak areas with those of known standards allows quantification, which is shown in Table 2.

Also identified in all of these reactions were significant amounts of iser and various low molecular weight amines including methylamine, ethylamine and ethanolamine. Since some of these are volatile and some may have been lost during the evaporation steps during workup, they could not be meaningfully quantified and compared here. Comparison of data from previous measurements of amino acids from tholins (Khare et al., 1984; Neish et al., 2010) and electric discharge reactions (Ring et al., 1972; Wolman et al.,...
For the comparison below we report the yields of amino acids from various tholin syntheses binned by the number of carbon atoms per molecule (C2: Gly; C3: α-Ser, α-Isoser, α-Ala, β-Ala; C4: α-Asp, γABA, αAIB, β-βABA; α-αABA; C5: δ-L-Glu).

The most notable differences are in the ratios of C2:C3 amino acids, with the major contributor being alanine. Relative yields are similar in many ways as evidenced by several studies. Modifications of the original MU apparatus set up, for example those including H2S or nebulized water vapor, produce amino acid mixtures that are even more similar than that used for Peltzer et al.’s comparison (Johnson et al., 2008; Parker et al., 2010, 2011). While these variations have not been systematically explored, we suggest here that multiple mechanisms could explain the similarity of one to another. These molecules are very reminiscent of the molecules produced from MU type experiments, suggesting there are similarities in their modes of formation. The laboratory experiments of Khare et al. (1984) and McDonald et al. (1994) were carried out at room temperature; however, these authors argued that because of the large difference in effective temperature between the energy source for molecular dissociation and the ambient temperature, both in the laboratory and on Titan, the choice of reaction temperature may not significantly affect the results.

There are significant differences in how these laboratory materials were formed. The Miller–Urey electric discharge samples were made from CH4 and N2 at room temperature in the presence of water vapor buffered with aqueous NaHCO3, while the Titan tholin samples were made from a high frequency discharge at low temperature in the absence of water and then hydrated in aqueous NH3 at low temperature. Electric discharge experiments starting from N2 or NH3, CH4 and H2O likely initially generate various radical species such as N and CH3 which recombine to give species such as HCN, acetylene and cyanocetylene (Miller and Urey, 1959; Sanchez et al., 1966). The deposition of these species into aqueous solutions containing NH3 allows various Strecrer and other reactions, which can directly yield amino acids (Miller, 1957).

Strecrer- and Michael-addition type reactions proceed directly in the aqueous phase starting with the organic precursors such as HCN, aldehydes, acrylonitrile and cyanocetylene. Aqueous HCN chemistry itself may produce some higher carbon skeletons such as those of Asp and Glu (Ferris et al., 1974), although the mechanism for the generation of Glu from HCN does not have a good mechanistic explanation yet (Harada, 1967).

If these species are derived from non-oxygenated species, mechanistic pathways for their synthesis must exist, which must be distinct from classically proposed ones such as the Strecker syntheses, as aldehydes and ketones cannot be initial precursors for their formation. This does not mean that processes which include aldehydes or ketones cannot also contribute to these processes,
but that both types of synthesis contribute to the formation of the same types of compounds (He et al., 2012).

Despite some early arguments to the contrary (Matthews, 1982), tholins are clearly different materials than HCN polymers, although both contain considerable amounts of nitrite functional groups. Tholins also appear to be better matches in general for extraterrestrial organic materials, both spectrally and with regard to their components. They are typically much more C rich and N poor than HCN polymers, and have rather different mass distributions (Vuitton et al., 2010).

Interestingly, room temperature hydrous spark discharge reactions are evidently good analogues of hydrated Titan tholins. Rather than being merely serendipitous, it seems likely that CH₄ and N₂ when excited recombine to give very similar organic products, which hydrate similarly regardless of hydrolysis temperature. It also seems likely that among any one of these samples, multiple mechanisms of formation may be operative, as evidenced by isotopic labeling studies (Elsila et al., 2008). Regardless of the precise mechanism of synthesis, it does seem that there is a cohesive mechanism at some level in all of these syntheses.

Miller’s pioneering work showed how surprisingly easily compounds of biological relevance, for example urea, Gly, Ala, Asp, etc., could be made in simple prebiotic simulations (Miller, 1953). Consequently there has been a general trend to look for more compounds of biological relevance in these reactions. While several more have been found, it must be borne in mind that organic structural isomerism leads to there being a very large number of compounds with identical formulas, even among the subset of those which are amino acids (Table 3).

Although the excellent mass resolution and mass accuracy of FT-ICR-MS allow for unambiguous elemental formula assignment with minimal sample cleanup (for example directly from organic solvent extraction, Ehrenfreund et al., 1995; Schmitt-Kopplin et al., 2010), a single formula can represent many structures (Table 3), zwiterions may not electrospray well in either positive or negative mode, and ion suppression in such complex samples is likely. Additionally, compounds with the same molecular formula derived from the same isotopically enriched starting materials can reasonably be expected to have similar isotopic enrichments. Thus, while FT-ICR-MS is an extremely powerful method for finding molecular formulas, it alone cannot provide unambiguous identification, and further dimensions of analysis, such as liquid or gas-phase separations and fragmentation are required.

All analytical methods have their limitations when analyzing amino acids. Amino acids lacking chromophores are difficult to detect via HPLC, and thus derivatization is typically required, commonly targeting amino groups (Lunn and Hellwig, 1998). While UV detection is typically robust, many extraneous compounds may absorb in near UV wavelengths which are typically monitored.
Amines (acid, 2,4-diaminobutyric acid, and ornithine) and secondary enantiomers. The development of such derivitization techniques for detection of primary, secondary and vicinal diamines and their enantiomers. The development of such derivitization techniques should be possible, and would be useful for future Solar System exploration programs.

Fluorescence detection overcomes this to some extent, as specific excitation and emission wavelengths allow peaks lacking the derivitization reagent to be filtered out. Derivatization also renders amino acids less polar, and more amenable to analysis via reversed phase chromatography.

GC–MS allows for simple detection and fairly unambiguous identification via EI fragmentation spectra, with numerous derivatization reagents allowing volatilization of polar compounds. One drawback, however, is that large polar compounds with multiple tags may not volatilize well, or they may thermally decompose before eluting from the GC column. On the positive side, fragmentation spectral libraries usually facilitate compound identification, but require comparison with authentic standards to further validate candidate compound identities.

LC-FD–MS is very sensitive, retention times are diagnostic, and a mass peak must correlate with a fluorescence peak: if there is no FD peak then the mass detected does not likely correspond to a primary amine. ToF–MS allows for good mass resolution, which means one can be fairly certain of molecular formula identification, and the addition of the OPA/NAC moiety constrains possible formulas. The downside is that obtaining fragmentation spectra requires more sophisticated hybrid Q-TOF instrumentation, and OPA/NAC does not tag some classes of compounds including 1,2-diamines (e.g., 2,3-diaminopropionic acid, 2,4-diaminobutyric acid, and ornithine) and secondary amines (e.g., proline and sarcosine). How similar these samples appear when a larger set of compounds is considered is the subject of ongoing work in our laboratories.

The LC-FD–MS techniques used here are very sensitive, highly unambiguous due to their multi-dimensionality, and are standardized and readily available, though they have blind spots, such as the inability to detect certain molecular weight amines of potential prebiotic interest, such as secondary amines and vicinal diamines. Ideally, an LC-MS-compatible derivitization method should be developed which allows for separation and detection of primary, secondary and vicinal diamines and their enantiomers. The development of such derivitization techniques should be possible, and would be useful for future Solar System exploration programs.

4. Conclusions

Room temperature MU experiments conducted in the presence of water, with or without initial aqueous NH₃, hydrolyzed under various conditions, and various anhydrous Titan tholin hydrolysis experiments produce many of the same amino acid products. However, we note that considerable care must be exercised in their identification, as neither chromatographic retention time nor mass alone are fully reliable detection techniques. Our results suggest there may be a remarkable cohesiveness in the types of amino acids which can be produced in various primitive planetary environments given a reducing atmosphere.

Acknowledgments

H.J.C. would like to thank the Geophysical Laboratory of the Carnegie Institution of Washington and Mrs. Mary Wolf for assistance with literature searches, as well as support from a NASA Astrobiology Institute NPP fellowship for grant support. E.T.P., H.J.C. and F.M.F. acknowledge support from the NSF and NASA Astrobiology program under the NSF Center for Chemical Evolution, CHE-1004570. M.P.C. and J.P.D. acknowledge support from the NASA Astrobiology Institute and The Goddard Center for Astrobiology.

Table 3

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Molecular formula</th>
<th>Number of isomers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All⁴</td>
</tr>
<tr>
<td>Gly</td>
<td>C₃H₈N₂O₂</td>
<td>84</td>
</tr>
<tr>
<td>Ala</td>
<td>C₄H₈N₂O₂</td>
<td>391</td>
</tr>
<tr>
<td>Ser</td>
<td>C₅H₁₀N₂O₂</td>
<td>1391</td>
</tr>
<tr>
<td>Cys</td>
<td>C₅H₁₀N₂O₂S</td>
<td>3838</td>
</tr>
<tr>
<td>Thr</td>
<td>C₆H₁₂N₂O₂</td>
<td>6836</td>
</tr>
<tr>
<td>Asp</td>
<td>C₆H₁₂N₂O₄</td>
<td>65,500</td>
</tr>
<tr>
<td>Asn</td>
<td>C₇H₁₄N₃O₂</td>
<td>210,267</td>
</tr>
<tr>
<td>Pro</td>
<td>C₇H₁₄N₂O₂</td>
<td>22,259</td>
</tr>
<tr>
<td>Val</td>
<td>C₈H₁₄N₂O₂</td>
<td>6418</td>
</tr>
<tr>
<td>Met</td>
<td>C₈H₁₄N₂O₄S</td>
<td>86,325</td>
</tr>
<tr>
<td>Glu</td>
<td>C₉H₁₈N₂O₄</td>
<td>440,821</td>
</tr>
<tr>
<td>Gin</td>
<td>C₉H₁₈N₃O₄</td>
<td>1,360,645</td>
</tr>
<tr>
<td>Leu, Ile</td>
<td>C₉H₁₈N₂O₂</td>
<td>23,946</td>
</tr>
<tr>
<td>Lys</td>
<td>C₉H₁₈N₂O₃</td>
<td>257,122</td>
</tr>
<tr>
<td>His</td>
<td>C₉H₁₈N₂O₃</td>
<td>89,502,542</td>
</tr>
<tr>
<td>Arg</td>
<td>C₉H₁₈N₂O₄</td>
<td>88,276,897</td>
</tr>
<tr>
<td>Phe</td>
<td>C₁₀H₂₀N₂O₂</td>
<td>277,810,163</td>
</tr>
<tr>
<td>Tyr</td>
<td>C₁₀H₂₀N₂O₃</td>
<td>2,132,674,846</td>
</tr>
<tr>
<td>Trp</td>
<td>C₁₁H₂₂N₂O₃</td>
<td>1,561,538,202,786</td>
</tr>
</tbody>
</table>

⁴ “All” isomers denotes all structures which satisfy Lewis electron pairing rules for a given formula, the following column reports this number of isomers minus those structures which include 3 or 4 membered rings.

⁵ The total number of formula structural isomers which also contain the ααAmino acid backbone motif. The numbers in parentheses refer to isomers which contain 1 – a secondary α-amino acid backbone motif or 2 – a primary α-amino acid motif and an aromatic ring in the side-chain. Adapted from Meringer et al. (2013).

References

