The Development of the VLBI2010 Global Observing System (VGOS)

C. Ma, Code 698
and
D. Behrend, NVI Inc.

Solar System Exploration Seminar
for the Director of
Science and Exploration
Wednesday, August 22, 2012
Geodetic VLBI: How does it work?

A network of antennas observes a Quasar.

The delay between times of arrival of a signal is measured.

Using the speed of light, the delay is interpreted as a distance.

The distance is the component of the baseline toward the source.

By observing many sources, all components of the baseline can be determined.
Launch of VGOS in March 2012
VLBI2010: Why do we need it?

- Aging systems
- New technology
- New requirements
- Phenomena to be observed have magnitudes of a few millimeters \(\text{mm} \) accuracy!
- **VLBI2010**: response of the IVS to significantly improve geodetic VLBI and reach this high level of accuracy
- 2003-2005:
 - IVS Working Group 3 „VLBI2010“
 - goals and requirements
 - strategies and recommendations
IVS WG 3 Final Report

- Vision paper
- Published Sept 2005

Goals of the next generation system

VLBI2010 Goals

1-mm position accuracy (*based on a 24-hour observation*)

Continuous measurements of station position and EOP

Turnaround time to initial products < 24-hrs
Design Aspects of the VLBI2010 System

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>VLBI2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>antenna size</td>
<td>5–100 m dish</td>
<td>~ 12 m dish</td>
</tr>
<tr>
<td>slew speed</td>
<td>~20–200 deg/min</td>
<td>≥ 720 deg/min</td>
</tr>
<tr>
<td>sensitivity</td>
<td>200–15,000 SEFD</td>
<td>≤ 2,500 SEFD</td>
</tr>
<tr>
<td>frequency range</td>
<td>S/X band</td>
<td>~2–14 (18) GHz</td>
</tr>
<tr>
<td>recording rate</td>
<td>128, 256 Mbps</td>
<td>8–16 Gbps</td>
</tr>
<tr>
<td>data transfer</td>
<td>usually ship disks, some e-transfer</td>
<td>e-transfer, e-VLBI, ship disks when required</td>
</tr>
</tbody>
</table>

VGOS Network in 2012

-VLBI2010 very fast
 - radio telescope
 - twin radio telescope
-VLBI2010 fast
 - radio telescope
-upgrade legacy
 - radio telescope

[Hase et al., 2011]
VGOS Network in 2017

VLBI2010 very fast
- radio telescope
- twin radio telescope

VLBI2010 fast
- radio telescope

upgrade legacy
- radio telescope

[Hase et al., 2011]
Int’l VLBI Service for Geodesy and Astrometry
• The IVS currently has about **80 permanent components** supported by roughly **40 institutions** in **20 countries**.
GGAO 12-m antenna
Feed and LNAs cooled to ~20K

Both senses of linear polarization used

Odd channels from each pol’n for one band output to each Mk5C.

2 Gigabits/sec recorded on each Mk5C.

Total data rate: 8 Gbps
VLBI2010 signal chain

• Cooled broadband QRFH feed and LNAs (Caltech)
• UpDown Converters (4) (Haystack)
 – Select frequency bands in the range 2 to 12 GHz
• RDBE digital back ends (4) (Digicom)
 – PFB to get 16 32-MHz channels (8 from each pol’n)
 – Noise diode control for power measurement for Tsys
 – In use by VLBA and NASA
• Mark5C recorder (4) (Conduant)
 – In use by VLBA and NASA
Quad-Ridge Flared Horn (Caltech)
Observations

• Antennas
 – GGAO12M
 • 12m VLBI2010 antenna
 • At Goddard Space Flight Center, Maryland, USA
 • Full VLBI2010 signal chain
 – Westford
 • 18m prime focus antenna
 • At Haystack Observatory, Massachusetts, USA
 • Full VLBI2010 signal chain
 – Baseline length approximately 600 km.
Observations – 2012 Jan 19

- Objectives
 - Several hours on one source to check system.
 - Observe a source with polarization rotation
- Scans
 - Five minute scans for high SNR
 - Source 3C345
 - Approximately four hours total
- Frequency bands
 - Contiguous bands spanning 2 GHz: 6.4 – 8.4 GHz
Observations – 2012 May 16

• Objectives
 – Geodetic schedule
 – Observe a number of sources over entire sky

• Scans
 – 30-second observations
 – 6 hours total

• Frequency bands
 – Four bands at 3.5, 5.5, 6.6 and 9.6 GHz
Fully coherent ionosphere-corrected full-polarization delays using all four RF bands (100 scans, 6 hr)
WRMS post-fit residuals: 20 ps
Position formal errors: 8 mm vertical, 2 mm horizontal
New VLBI2010 antennas: TTW

- Twin Telescope Wettzell (Germany), Vertex Antennas
Twin Telescope Wettzell, April 2012