Sciences and Exploration Directorate

Nathan Arnold

(Research AST, Meteorological Studies)

Nathan Arnold's Contact Card & Information.
Email: nathan.arnold@nasa.gov
Phone: 301.614.5651
Org Code: 610.1
Address:
NASA/GSFC
Mail Code 610.1
Greenbelt, MD 20771
Employer:
NASA

Brief Bio


Dr. Nathan Arnold is a Research Meteorologist in the Global Modeling and Assimilation Office (GMAO, 610.1), where he contributes to development of the GEOS model physics. His research focuses on parameterization of atmospheric boundary layer turbulence, shallow convection, and clouds. Current projects include development of a unified eddy diffusivity mass flux (EDMF) boundary layer scheme with higher order closure (SHOC), representing the influence of surface heterogeneity on the boundary layer, and the assimilation of boundary layer height observations. Previous work in the GMAO has involved cold pools, convective organization/aggregation, the Madden-Julian Oscillation (MJO), and the diurnal cycle of precipitation. Dr. Arnold has expertise with the GEOS single column model and doubly periodic configuration.

Prior to joining NASA GMAO, Dr. Arnold was a NOAA Climate and Global Change postdoctoral fellow at Colorado State University, where he studied the MJO with Prof. David Randall. His previous research topics included atmospheric superrotation, warm anomalies in oceanic upwelling regions during the Pliocene, and the MJO response to global warming.

Positions/Employment


Research Meteorologist

NASA - GSFC GMAO

September 2017 - Present


Research Scientist

USRA / GESTAR - GMAO, NASA Goddard Space Flight Center

July 2015 - September 2017


NOAA Climate and Global Change Postdoctoral Fellow

Colorado State University - Fort Collins, CO

November 2013 - June 2015

 


Ph.D. Candidate

Harvard University - Cambridge, MA

September 2008 - October 2013

 


Research Assistant

Lamont Doherty Earth Observatory, Columbia University - New York, NY

June 2007 - August 2008

 

Teaching Experience


Harvard University

APM 202:  Partial Differential Equations (graduate)

APM 105:  Ordinary and Partial Differential Equations (undergraduate)

EPS 231:  Climate Dynamics (graduate)

EPS 131:  Physical Oceanography (undergraduate)

Education


Ph.D., Harvard University, Earth and Planetary Sciences
B.S., Columbia University, Applied Physics

Professional Societies


AMS

2008 - Present


AGU

2008 - Present

Publications


Refereed

2024. "Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization." Geoscientific Model Development 17 (12): 5041-5056 [10.5194/gmd-17-5041-2024] [Journal Article/Letter]

2024. "Accurate Assessment of Land-Atmosphere Coupling in Climate Models Requires High Frequency Data Output." Geosci. Model Dev. 17 1869–1883 [10.5194/gmd-17-1869-2024] [Journal Article/Letter]

2023. "Representing the Subgrid Surface Heterogeneity of Precipitation in a General Circulation Model." Journal of Advances in Modeling Earth Systems 15 (9): [10.1029/2022ms003562] [Journal Article/Letter]

2023. "CERESMIP: a climate modeling protocol to investigate recent trends in the Earth's Energy Imbalance." Frontiers in Climate 5 [10.3389/fclim.2023.1202161] [Journal Article/Letter]

2022. "Observation Impact and Information Retention in the Lower Troposphere of the GMAO GEOS Data Assimilation System." Monthly Weather Review [10.1175/MWR-D-21-0334.1] [Journal Article/Letter]

2021. "Seasonality in prediction skill of the Madden-Julian Oscillation and associated dynamics in Version 2 of NASA's GEOS-S2S forecast system." Journal of Geophysical Research - Atmospheres 126 (18): e2021JD034961 [10.1029/2021JD034961] [Journal Article/Letter]

2020. "Impact of Resolution and Parameterized Convection on the Diurnal Cycle of Precipitation in a Global Nonhydrostatic Model." Journal of the Meteorological Society of Japan. Ser. II 98 [10.2151/jmsj.2020-066] [Journal Article/Letter]

2020. "Cascading towards a km‐scale GCM; Impacts of a scale‐aware convection parameterization in the Goddard Earth Observing System GCM." Geophysical Research Letters 47 [10.1029/2020gl087682] [Journal Article/Letter]

2020. "Clouds and Convective Self‐Aggregation in a Multi‐Model Ensemble of Radiative‐Convective Equilibrium Simulations." Journal of Advances in Modeling Earth Systems [10.1029/2020ms002138] [Journal Article/Letter]

2018. "Nonrotating Convective Self-Aggregation in a Limited Area AGCM." Journal of Advances in Modeling Earth Systems 10 (4): 1029-1046 [10.1002/2017ms001218] [Journal Article/Letter]

2016. "Reductions in mid-latitude upwelling-favorable winds implied by weaker large-scale Pliocene SST gradients." Paleoceanography 31 (1): 27–39 [10.1002/2015PA002806] [Journal Article/Letter]

2015. "Global-scale convective aggregation: Implications for the Madden-Julian Oscillation." Journal of Advances in Modeling Earth Systems 7 (4): 1499–1518 [10.1002/2015MS000498] [Journal Article/Letter]

2015. "The MJO Response to Warming in the Super-Parameterized CESM." Journal of Climate 28 (7): 2706–2724 [Journal Article/Letter]

2014. "Effects of explicit atmospheric convection at high CO2." Proceedings of the National Academy of Sciences 111 (30): 10943-10948 [Journal Article/Letter]

2013. "Enhanced MJO-like Variability at High SST." Journal of Climate 26 988–1001 [Journal Article/Letter]

2012. "Abrupt Transition to Strong Superrotation Driven by Equatorial Wave Resonance in an Idealized GCM." Journal of the Atmospheric Sciences 69 626-640 [Journal Article/Letter]

2008. "A Laboratory Investigation of Light Scattering from Representative Components of Mineral Dust Aerosol at a Wavelength of 550nm." Journal of Geophysical Research, Atmospheres 113 (D8): [Journal Article/Letter]