NASA Logo, National Aeronautics and Space Administration

National Aeronautics and Space Administration

Goddard Space Flight Center

ALT

Fire Energetics and Emissions Research

FEER Updates

RSS

20.Feb.2019 - VIIRS active fire data available as VNPFIRE product.

12.Feb.2019 - FEERv1.0 Emissions processing stream fixed.

08.Feb.2019 - MODFIRE processing stream fixed.

31.Jul.2018 - Suomi-NPP VIIRS fire data added to Africa Explorer.

Interactions and Feedbacks between Biomass Burning and Water Cycle Dynamics across the Northern Sub-Saharan African Region

** Africa Explorer **

Welcome to this site devoted to the study of the interactions between biomass burning and climate in Africa. The following snippets highlight our project funded under two successive NASA Interdisciplinary Research in Earth Science (IDS) proposals, beginning in 2009. The IDS-2013 successor project aims to reinforce and amplify the preceding IDS-2009 interdisciplinary study by incorporating the potential impacts of similar environmental phenomena and processes in the adjoining Northern and Southern Africa as well as the Atlantic and Indian Oceans on the water cycle dynamics in the NSSA region. Our team is well constituted, with scientists from different but complementary areas of expertise, including biomass burning and surface characterization, aerosols and atmospheric modeling, cloud processes and precipitation, surface hydrology, ground-water hydrology, and climate modeling. Most of these scientists have substantial experience working in the NSSA region. This research is strategically designed to encompass in depth and breadth the different disciplines relevant to the subject matter, with dynamic linkages throughout the research period, in order to obtain a comprehensive result that relates the scientific outcome to societal impacts, as well as future projections of these. This is needed to formulate mitigation options to avert the looming regional/global catastrophic outcome of a potentially irreversible "takeover" of that region by drought/desertification, exemplified by the drying up of Lake Chad and other water resources. Detailed description / List of team members

The Issue

The Northern Sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the genesis of global atmospheric circulation and the birth of such major (and often catastrophic) events as hurricanes and the distribution of the Saharan dust to other parts of the world. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation.

Read more