CubeSat hyperspectral imaging technology

Goddard Planetary CubeSat symposium June 27th, 2019

Chris Mann, Nanohmics, Inc. | cmann@nanohmics.com

Nanohmics: Dan Mitchell, Giri Joshi, Kieran Lerch, Leslie Wood, Kyle Hoover, Jon Diaz, Noel Arguello, Jesus Meza-Galvan, Josh Reudin, Alex Greis, Byron Zollars
University of Maryland: Tilak Hewagama, Lori Feaga, Jessica Sunshine

Overview

We are fabricating a micro-optical chip to augment focal planes, converting standard image sensors into hyperspectral cameras for CubeSats

Nanohmics Background

- Based in Austin, TX
- Founded 2002
- Staff of ~40
 - Primarily scientists, engineers, and technicians
- 13,500 sq. ft. of industrial R&D flex space
- Member of the NNCI at University of Texas at Austin
- Core capabilities:
 - Microfabrication
 - Novel materials
 - Electro-optics
 - Instrumentation engineering
 - Sensors & diagnostics

Program Background

- NASA STTR Phase II R&D program with University of Maryland to develop CubeSat hyperspectral imaging sensors
 - Demonstrate in VIS, move into IR in Phase II-E/III
- We are developing a ~1 gram chip that converts a camera into a hyperspectral camera with full spatial-spectral-temporal registration
 - Does not require scanning in any dimension (spatial, spectral, or temporal)
 - No spectral filters, radiometrically efficient
 - Trades spatial for spectral information
 - Prototype delivery in September

Hyperspectral chip

- Focal plane augmentation, add ~1 gram of mass by adding a chip very nearly on an FPA
 - Shifts focal plane by ≤1 mm
- A prototype chip is shown on right
 - 100 x 100 spatial elements
 - Target for Gen 1 prototype:
 - 450-950nm bandwidth
 - 5-10nm spectral resolution
 - Frame rate limited by radiometry, underlying image sensor
- Secret sauce:
 - Computational spectroscopy...

"Diagonal" spectroscopy

 Traditional spectroscopy separates bands in essentially linear ways

"Non-diagonal" spectroscopy

• Non-diagonal spectroscopy separates bands in complicated ways, with multiple spectral lines on each detector (e.g., FTIR)

Mie scattering for spectral dispersion ka = 1.0 ka = 1.1 ka = 1.5

$$k = \frac{2\pi}{\lambda}$$

a = radius of scatterer

Single element in the hyperspectral array **Multi-spectral** incident light Concentrator improves radiative Concentrator throughput, homogenizes input and light homogenizer Dispersive • <u>Aperture</u> provides spatial filter, media sets up a reproducible light Pinhole source (ala entry slit to monochromator) (entrance slit) • **Dispersive media** separates light Scene • Isolators prevent crosstalk **Pixel array** element isolator <u>Detector array</u> detects a wavelength and polarization-Wavelength-dependent speckle pattern dependent speckle pattern reveals spectral content

Optical concentration

Optical micrograph – view from top

Cleaved sample, cross-section (note, different sample)

Tailoring concentrator entrance

- Perform a post-etch sidewall cleanup to maximize fill factor, reduce roughness
- Tunable chemical & plasma etch processes

Speckling media

Integrate scattering media with photolithographic processes

Scene element isolation

NAN**OHM**ICS

Wavelength-dependent speckle

• Each speckle pattern evolves differently

500nm

565nm

700nm

14

Computational reconstruction

- Spectrum is determined by coefficients, *x*:
 - $Min(\|\mathbf{T}x S\| + \alpha \|Dx\| + \beta \|x\|)$
 - **T** the calibrated transfer matrix
 - *S* the measured speckle pattern vector
 - *D* the difference operator
 - α , β are reconstruction stabilization parameters and are chosen to be as small as possible
- Calculate after downlink, not onboard (excepting potential preview images)

CubeSat telescopes

- Sensor puts few constraints on telescope
 - f/4 or slower is best, though concentrators can be tailored for faster optics
 - Faster/wider FOV optics, prefer imagespace telecentric
- 1U telescope options:
 - 80mm Cassegrain (right) for long-range
 - Central obscuration blocks ballistic rays
- Because of our large spatial elements (~90µm), relaxed imaging constraints
 - Deployable optics may be an option

Niche for technology

- Applications where pushbroom is inappropriate
 - Pushbroom provides better spectral, spatial resolution
- Great for transient, full-frame operation
 - CubeSats without pointing control
 - Auxiliary instrument that doesn't constrain platform motion
 - Semi-disposable CubeSats
 - Comet approach, high probability of damage
 - Surface approach & impactors
- Applications with modest spectral, spatial tradeoffs
 - Color filter wheels take up space and mass, have moving parts prone to failure

Questions?

Calibration – Spectral Engine

Custom spectra

A N O H M I C S

Reconstruction stability

