

¹³C isotope chemistry in O and C-rich AGB star envelopes

Gwénaëlle Dufour, Martin Cordiner, Stefanie Milam, Steven Charnley

Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD

Introduction

An asymptotic giant branch (AGB) star is a low or intermediate mass star (< $8M_{\odot}$) at a late evolutionary phase in its life. The star evolves into a degenerate C/O core, undergoes intense mass loss and injects dust and molecules into the surrounding regions, creating a circumstellar envelope (CSE). A schematic description^[1] of AGB stars is shown in Figure 1. The molecular content, and also the grain types, in the CSEs of AGB stars are to a large extent determined by the C/O ratio of the central star. Depending on this ratio, AGB stars are divided into three different spectral types: C-rich AGB stars (C/O>1), O-rich or M-type AGB stars (C/O<1) and Stype AGB stars (C/O \approx 1).

In this work we present a new chemical model for the study of ¹³C chemistry in the envelopes of AGB stars. Tracing the radial evolution of ¹²C/¹³C in AGB star envelopes is crucial for the interpretation of single-dish and interferometric observations, which will help determine the intrinsic nucleosynthetic ratio of the star vs. the molecular ratio of the envelope.

Figure 1 : Schematic structure of the CSE for an AGB star, which is divided into 6 regions: (I) a degenerate C/O core and

The Chemical model

The chemical network, derived from a subset of the UMIST RATE12^[2] database, contains 252 species coupled by 4839 reactions and is appropriate for use in both oxygen and carbon-rich envelopes. For the Orich model the simulation starts at the inner envelope with the following set of parameters : the radius $r_i = 2.0e15$ cm, the molecular hydrogen number density $n_{H_2} = 5.2e5$ cm⁻³, the visual extinction $A_v = 1.11$ mag and the kinetic temperature of the gas T = 100 K. For the C-rich model : $r_i =$ 2.0e15 cm, n_{H_2} = 3.23e6 cm⁻³, Av = 6.90 mag and T = 221 K. Figure 2 shows the evolution of these parameters in function of the radius. The Parent species (Table 1) injected at the inner radius have a ¹²C/¹³C ratio equal to 50 in the C-rich model , and have a ratio equal to 15 in the O-rich model. Our chemical network includes all singly and doubly ¹³C-substituted isotopologues for species containing up to 2 C atoms.

Figure 2 : Physical parameter profiles calculated as a function of the radius in the C-rich and O-model.

Discussion

Using our simplified chemical network, the ¹²C species fractional abundances relative to H₂ calculated with C-rich and O-rich models show similar results to some previous studies, such as X. Li et al.^[3] in the O-rich case (IK Tau) and Agundez et al.^[4] in the C-rich case (IRC+10216). Our models predict variations in the ¹²C/¹³C ratio as a function of radius for C⁺, CO, CN, HCN, HNC, CS, HCO⁺, CH₂CN, CH₃CN and others, many of which should be detectable using existing or future mapping observations.

The fractional abundance profiles in Fig.3 obtained in both models can be explained by analyzing the formation and destruction paths of each species and their isotopologues. The H¹³CN fractionation in the O-rich model and the ¹³CCH fractionation in the C-rich model result from the following pathways:

The ¹²C/¹³C ratio profiles in Fig.4-5 can be explain by looking at the fractional abundances. For example in the O-rich model the ¹²CO/¹³CO ratio, showing the higher value in Fig.4, begins to increase at a close radius ~10¹⁶ cm due to the photolysis of ¹³CO, up to a maximum at 8.2x10¹⁶ cm, then C⁺ and ¹³C⁺ become the main carbon reservoir; ¹²CO/¹³CO decreases to a minimum at 2.1x10¹⁷ cm. For the others species ratios in this figure, except atomic carbon, we obtained ratios significantly different from the initial (parent) ¹²C/¹³C ratios in the molecular envelope at a radius 3x10¹⁵ cm to 10¹⁷ cm, due to the incorporation of atomic ¹³C as a result of neutral-neutral chemistry in this range. The ¹²C/¹³C ratio value is low at the inner envelope until ~10¹⁷ cm, due to a greater atomic ¹³C fractional abundance (from ¹³CO photolysis). Another example, in the C-rich model, the increasing H¹²CN/H¹³CN around 10¹⁷ cm is due to an increase in ${}^{12}CH_2/{}^{13}CH_2$ in the following pathway:

 ${}^{13}CO \xrightarrow{h\nu} {}^{13}C \xrightarrow{h\nu} {}^{13}C^+ \xrightarrow{H_2} {}^{13}CH_2^+ \xrightarrow{H_2} {}^{13}CH_3^+ \xrightarrow{e-} {}^{13}CH_2 \xrightarrow{N} {}^{13}CH_2 \xrightarrow{N} {}^{13}CN$

Future Work

(1) Expand the chemical network to include ^{13}C fractionation chemistry for species with 3 or more C atoms, including polyynes and cyanopolyynes.

(2) Generate models for ¹⁸O and ¹⁵N chemistry in circumstellar envelopes

- (3) Comparison of models with interferometric (and single-dish) observations will provide new insights into the origins of the observed isotope abundances. Mapping ¹²CO/¹³CO will provide a test for our models.
- (4) Improved accuracy will be obtained by inclusion of more detailed radiative transfer and self-shielding calculations.

References: [1] X. Li, PhD, Leiden University; [2] D. McElroy and al, 2013, A&A, 550, A36; [3] X. Li et al, 2015, A&A, 588, A4; [4] M. Agundez and J. Cernicharo, 2006, ApJ, 650:374-393 This work is supported by NASA's Astrophysics Research and Analysis and Astrophysics Data Analysis Programs