

Dr Peter Young peter.r.young@nasa.gov

NASA Goddard Space Flight Center

Solar UV bursts

Reconnection scenarios

Solar eruptive events [Holman, 2016, JGR]

Coronal jets

Nanoflares [Parker, 1983, ApJ]

The IRIS satellite

- NASA Small Explorer satellite, launched in 2013
- Ultraviolet imaging slit spectrometer
 - far-ultraviolet: 1332-1358 Å, 1389-1406 Å
 - near-ultraviolet: 2782-2834 Å
- High spatial resolution: 0.32 arcsec (230 km)
- Has a slitjaw camera for simultaneous imaging

For UV bursts:

- Si IV 1393.8 Å & 1402.8 Å
- Slitjaw 1400 Å filter
- Temperature: 80 kK (transition region)

2013: IRIS launched (July) 2014: I received NASA HGI funding to study "compact energetic brightenings" for 3-year project 2015: Successful ISSI Team proposal to study "solar UV bursts" 2016: ISSI team met in January 2017: ISSI team met in March 2018: Space Science Reviews article published 2018: I became a civil servant

Timeline

- 2014: Peter et al. Science paper published ("hot explosions" or "bombs")

Solar transition region

- Layer between the chromosphere (10⁴ K) and the corona (10⁶ K)
- Temperature rises sharply over 10's of km • Small line-of-sight means lines very susceptible to plasma dynamics (Doppler shifts, line broadening)

- **Bombs**: good name, but potential security risk!
- **Bursts:** used previously but too generic?
- **Explosive events**: different phenomena (QS, CH only)
- **Blinkers**: probably same phenomena, but out of fashion

Decided on "solar ultraviolet bursts", or just "UV bursts" - see Young et al. (2018) review for more details

Naming

SMM/UVSP bursts

- Hayes & Shine (1987, ApJ) reported active region "bursts" I chose this name as I believed the events were the same as the IRIS ones

Defining UV bursts

Most structures are defined through their images

Jet

UV bursts in IRIS 1400 Å movies

Note:

• UV bursts generally overlie interacting, small-scale magnetic features (left panel) • UV bursts generally have no signature in the AIA 171Å channel (right panel)

UV burst definition

Based on transition region image sequences (e.g., IRIS 1400Å):

- 1. Compactness: core brightening less than 2 arcsec
- 2. Duration: lifetimes 1-60 minutes, but flicker on timescales of 1 minute
- 3. Intensity: brighter than their surroundings by factor ≥ 20
- 4. Motion: small proper motions of < 10 km/s
- 5. Not related to flares

Young et al. (2018, Sp. Sci. Rev)

A subset (majority) of UV bursts have complex spectral line profiles • these are the "IRIS bombs" of Peter et al. (2014, Science)

Use of the word "bomb" is discouraged, though!

IRIS bombs

Properties of UV bursts

Data-set from 22-Oct-2013

Locations of UV bursts

- G1 moving magnetic features (MMFs)
- G2 light bridge
- G3 emerging or cancelling magnetic flux

Magnetic field evolution

HMI M 720s, 22-Oct-2013 08:11:23 UT, max=±700 G

- Magnetic field movie (HMI) covers 18 hours (08:00 to 02:00)
- IRIS data covers 4 hours (21:00 to 01:00)
- UV burst locations marked with blue crosses

Light curves

Moving magnetic feature (MMF) example

Plasma at 80 kK

Plasma at 0.8 MK

Light Bridge Example

HMI, AIA and IRIS movies show how fast (minutes) magnetic evolution drives explosive atmospheric activity at smallest scales (1000 km, 10 secs)

AIA, 800,000 K

Si IV emission line profiles

- Bursts occur at 12 spatial locations (A-L)
- Observed in multiple raster scans (1, 2, 3, - - -
- Wide variety of line profiles
- What physical process(es) cause these shapes?

A "sit-and-stare" observation

- The intensity and shape vary significantly
- ...but the overall width ($\simeq 200$ km/s) remains about the same
- Also the cool absorption lines (at +80) and +115 km/s) remain present throughout

What type of reconnection?

Occurs at heights of ~ few Mm (temperature minimum region)

U-loop reconnection [Georgoulis et al. (2002, ApJ)]

Magnetic geometry may affect coronal signature

Jet/surge reconnection [Nóbrega-Siverio et al. (2017, ApJ)]

Modeling

Current sheets & plasmoids [Lei Ni et al., 2015, 2016, 2018a,b,c, 2021]

- High resolution (meters)
- Can model details of plasmoid heating and dynamics

3D flux emergence [Hansteen et al., 2017, 2019]

Si IV 139.38 nm t = 8260.0 s

- Lower resolution (10's of km)
- Fully 3D, can reproduce line profiles

Plasmoid-mediated reconnection (Peter et al. 2019)

- Simulation of moving magnetic feature UV burst
- 2.5D resistive MHD
- See "flickering" in kinetic energy related to plasmoids

Advantages of transition region for reconnection studies

- Reconnection site is co-spatial with photospheric/chromospheric magnetic field Magnetic evolution is usually obvious (typically, cancellation)
- Highest spatial resolution (0.3 arcsec)
- Can directly see the reconnection dynamics in line profiles (?)

- UV bursts are an important case study for magnetic reconnection
- Modeling suggests complex Si IV line profiles can be reproduced
- DKIST will give much-improved magnetic field measurements
- DKIST will also allow Ellerman bomb connection to be studied
- EUVST will reveal temperature structure of UV bursts

Summary

Decadal Survey thoughts

UV bursts show benefit of:

- High resolution spectra at high spatial resolution
- Stable, high resolution, high-cadence magnetograms
- Transition region imaging

Decadal survey mission concepts:

- " 4π " or polar missions likely would not prioritize high-resolution, highcadence data
- Imaging spectrometers would be a low priority