Study of Type III Radio Bursts from Small-scale Reconnection Events

Sherry Chhabra^{1,2} James Klimchuk², Dale Gary¹, Nicholeen Viall² ¹New Jersey Institute of Technology, ²NASA Goddard

Graduate Advisors: James A. Klimchuk (NASA, GSFC) Dale E. Gary (CSTR, NJIT)

Nanoflares

- Impulsive energy releases due to small breaks in coronal magnetic fields that have become stressed by photospheric convection.
- Too small to be detected individually, in part due to the optically thin corona
- Several lines of evidence suggest that they may be the primary cause of coronal heating.

Image Courtesy: TRACE

Do nanoflares accelerate particles in the same manner as full-sized flares?

If so, how efficiently?

Why Type III Radio Bursts?

- Produced by propagating beams of high energy electrons
- Fast frequency drift rates

[Reid et al., 2014]

Traditional type IIIs

Why Type III Radio Bursts?

- Produced by propagating beams of high energy electrons
- Fast frequency drift rates
- Do not suffer the same limitations as hard x-ray emission or EUV

[[]Reid et al., 2014]

Why Type III Radio Bursts?

- Produced by propagating beams of high energy electrons
- Fast frequency drift rates
- Do not suffer the same limitations as hard x-ray emission or EUV
- Nanoflares would produce multiple overlapping Type III bursts, resulting in a "radio haze," rather than distinct events

[Bougeret et al., 1995]

Model: Simple hydrostatic loop

Case A:

- Reconnection site: loop top
- Velocity(E = 2 keV) : Constant
- Duration of reconnection: fixed

Case B:

- Reconnection site: Random
- Preferred direction: downward

Intensity light curves at the three frequencies

Model: Simple hydrostatic loop

Case A:

- Reconnection site: loop top
- Preferred direction: downward
- Velocity(E = 10 keV) : Constant
- Duration of reconnection: fixed

Case B:

Reconnection site: Random

Case C:

- Reconnection site: Random
- Preferred direction: Equal propagation in both directions.

Intensity light curves at the three frequencies

What happens when we have hundreds of nanoflares going off in a second?

Time – Lag Technique (simulated emission for AIA channels)

Viall & Klimchuk [2013]

Cross-correlation Power Spectrum (CCOPS)

Varying Intensity as a function of Δv

Varying Intensity as a function of Δv

Varying Intensity

Intensity light curves after applying Intensity Variation

Multiple Loops: Choice of Loop Distribution and Frequencies

Low-Density Loop Distribution

Low-Density Loop Distribution

CCOPS for Low-Density Loop Distribution ⁻10 ج L ν_2 ν_1 10⁸ 0 157 0.162 0.158 0.161 Plasma Frequency, v_p [GHz] 0.4 L_2 *L*3 L Relative Intensity [a.u.] Corss-correlation Power 0 E 10⁶ L_n 0.0 a) C) 10⁵ 0.160 0.162 0.163 0.157 0.158 0.159 0.161 -2 2 1 Plasma Frequency, ν_p [GHz]

[a.u.]

Light curves & CCOPS for a quasi-continuous distribution of loops

Quasi-continuous distribution of loops: Low burst-frequency

Quasi-continuous distribution of loops: The role of Noise

Data : VLA Dynamic Spectrum for April 25th 2013

Parker Solar Probe: Single Burst

Type III Storm (E2)

Quiet Period

Summary...

- Model: Despite the additional noise and hundreds of overlapping bursts, we are still able to identify the signature of type III bursts
 - The frequencies closer together show better results
- DATA (Preliminary Results)
 - VLA shows no signature of type IIIs
 - Similar results are seen in PSP. The technique is able to detect time-lags in noise storms and also identifies periodicities (may be psuedo)
 - Low-sensitivity of the instrument makes it difficult to see any fainter type III or lack thereof.

Currently Exploring...

- New data from Encounters 3,4 & 5 of Parker Solar Probe (PSP)
- Getting an upper limit on nanoflares per second that can be explained by VLA and PSP observations.
- High resolution data from LOFAR that offers much higher sensitivity

• Properties of high intensity emission from loop-top positions that may manifest as Type I bursts in a dynamic spectrum.

Thank you for your attention !!! Questions?

Factors Affecting the CCOPS

$$P(l < 0) = \frac{\sum_{k=0}^{N-|l|} f(x_{k+|l|} - \overline{x})(y_k - \overline{y})}{\sqrt{\sum_{k=0}^{N-1} (x_k - \overline{x})^2 \sum_{k=0}^{N-1} (y_k - \overline{y})^2}} \qquad P(l > 0) = \frac{\sum_{k=0}^{N-l} f(x_k - \overline{x})(y_{k+l} - \overline{y})}{\sqrt{\sum_{k=0}^{N-1} (x_k - \overline{x})^2 \sum_{k=0}^{N-1} (y_k - \overline{y})^2}}$$

Factors Affecting the CCOPS

