Role of small-scale impulsive events in heating the X-ray bright points of the quiet Sun

Biswajit Mondal^{1, 2*}, James A Klimchuk³, Santosh V. Vadawale¹, Aveek Sarkar¹, Giulio Del Zanna⁴, P.S. Athiray^{5,6}, N. P. S. Mithun¹, Helen E. $Mason⁴, and A. Bhardwaj¹$

> 1Physical Research Laboratory, India 2 Indian Institute of Technology Gandhinagar, India ³NASA Goddard Space Flight Center, USA 4DAMTP, CMS, University of Cambridge, UK 5CSPAR, The University of Alabama in Huntsville, USA 6NASA Marshall Space Flight Center, USA

> > $\text{[Email - biswajit/0mondal}94@gmail.com \qquad \qquad 25 \text{ Jan } 2023$

What are the XBPs?

- ➢ XBPs are located all over the solar disk. (see Vaiana et al., 1973; Krieger et al., 1971; Golub et al., 1974)
- \triangleright In the solar maxima, their contribution is hidden behind the huge AR emission.
- \triangleright During the quiet phase XBPs are the primary on-disk X-ray contributors.

Chandrayaan-2 Solar X-ray Monitor (XSM)

- XSM is a soft X-ray spectrometer, which is observing the Sun as a star from the lunar orbit and functional from mid of the year 2019, covering the minimum of solar cycle 24.
- \geq It provides disk-integrated Solar spectrum at every second in the energy range of 1-15 keV (upto M5 class of solar activity) or $2-15$ keV ($> M5$ solar activity).
- Very good energy resolution of 175 eV ω 5.9 keV for a broad band soft X-ray energies.

XSM Observations during the minimum of solar cycle 24

• By modeling the XSM spectra during the QS period, we have estimated the temperature, emission $\frac{Ref : Vadawale et al. (2021a,b)}{Mondel et al. (2021)}$ measure as well as the abundances of Mg, Al, and Si for the XBPs, ARs, and Flares.. Mondal et al. (2023)

XSM Observations during the minimum of solar cycle 24

Motivation

- What fraction of the total quiet Sun X-rays contributed by the XBPs and at what temperatures?
- What is/are the origins behind the heating of XBPs?
	- derive DEM for full Sun
	- DEM for X-ray emitting regions (XER) 10^{-21} 0^{-23} 1.29-1.45 keV .45-1.72 keV $\begin{array}{c}\n 10^{-24} \\
	\hline\n \text{SUSM} \\
	\text{CountS cm}^5 \text{ s}^{-1} \text{ 10}^{-25} \\
	10^{-26} \\
	10^{-27}\n \end{array}$ 72-1.95 keV .95-2.5 keV 10^{-25} 10^{-25} $O_i = \int_T DEM(T) \; R_i(T) \; dT \; + \; \delta O_i$ AIA94 10^{-26} 10^{-26} AIA131 AIA171 AIA193 10^{-27} $\overline{6}$ 10^{-27} AIA211 AIA304 AIA335 10^{-28} 10^{-2} 7.2 6.0 6.2 6.4 6.6 6.8 7.0 $Log(T)$

DEM of Full Sun

DEM peak near 1 MK is similar to the earlier studies of QS DEM, e.g., Lanzafame et al. 2005; Brooks et al. 2009; Del Zanna 2019

Extracting the XER emission from AIA

Extracting the XER emission from AIA

Full sun vs XERs

 $XER \rightarrow XBPs + limb$ brightenings

DEM of XBPs

a

 1.08×10^{5}

 DEM_{XBPs}

 0.87×10^{5}

- \triangleright At lower temperature the radiation loss from the diffuse corona is significant whereas at higher temperature it is negligible.
- \triangleright At lower temperature XBPs emission is more than 63%, while at higher temperature it is more than 85%

Can nanoflares be responsible to heat the XBPs?

- \triangleright Modeled the XBP's assuming nanoflare heating scenario.
- \triangleright Estimate the simulated DEM, which is compared with the observed DEM.
- \triangleright We modeled the XBP loops using EBTEL model (Klimchuk et al. 2008; Cargill et al. 2012; Barnes et al. 2016).

Magnetic skeleton of XBPs

Heating function

- Here we consider that nanoflares occur with the release of stored magnetic energy (Parker, 1988)
- $E = \frac{(tan(\theta) < B >)^2}{8\pi} (erg \ cm^{-3})$ Magnetic stored energy density :
- $tan(\theta) = c \rightarrow 0.2 0.3$, to satisfy observed coronal heating requirement (Parker 1988; Klimchuk 2015).
- Consider triangular heating profiles having a duration (τ) of 100 s.
- The peak heating rate during an event is randomly chosen between minimum (H_0^{min}) and maximum (H_0^{max}) values that are loop dependent.

$$
H_{0_{ij}}^{max} = \frac{1}{\tau} \frac{(c < B >_{ij})^2}{8\pi} (erg \, cm^{-3} \, s^{-1})
$$
\n
$$
H_0^{min} = 0.01 \, H_0^{max}
$$

• Model parameters \rightarrow *c* and *F* $\left(H_{0ij}^{max}\right)$ for a loop.

$$
d_{ij}^l = \frac{\tau L}{F} \times H_{ij}^{l-1}
$$

 max H_0 is randomly chosen between \min _{*min*}) and maximum

Simulated and Observed DEMs

- Matches well at logT>6.0
- What happened for $logT <$ 6.0?
- Could be due to the poorly constrained DEM at lower temperatures by AIA??

 $c = 0.21$, $g = 2.47$, $V = 1.5$ km/s

Simulated DEM convolved with instrument responses

- Still, model DEM predicts 2-3 times higher emission at lower T.
- Simulated TR predicts a larger emission than the observed one —> common (e.g., Warren et al. 2008) in loop simulations.
- Possibility absorption TR emission by frequent chromospheric jets, such as spicules (De Pontieu et al. 2009)

➢ Agreement for the coronal portion of the loops are remarkable, suggesting nanoflare can mentioned the heating of XBPs.

Frequency distribution of the nanoflares

● A power-law slope of -2.5 indicates that combined energy of nanoflares is more compared to the energy of their bigger counterparts, namely, flares or microflares.

Summary

- \triangleright Carried out a prolonged investigation of the quiet solar corona by separating out the contributions from its various emission components in the Sun-as-a-star mode observations.
- \triangleright Most of the quiet or diffuse corona emit at low temperatures (log T < 6.1). In contrast, most emission above $log T = 6.1$ originate from XBPs.
- \triangleright Agreement of the observed & simulated emissions for the coronal portion of the loops are remarkable, suggesting nanoflare can mentioned the heating of XBPs.
- \triangleright The frequency distribution of nanoflares are found to follow a power-law with a slope close to -2.5, suggesting that combined energy of nanoflares is more compared to their bigger counterparts, namely, flares or microflares.
- \triangleright The frequency distribution becomes flatter at very lower energies, indicating that very small loops with higher magnetic field strengths are not contributing here.

<http://dx.doi.org/10.48550/arXiv.2301.02519>

Thank You for your attention!