Constraints from Hinode/EIS on the Expansion of Active Region Loops Along the Line of Sight

or

Are Coronal Loops Really Cylindrical? : Spectroscopy Edition

T. Kucera, P. Young, J. Klimchuk & C. Deforest

Loops around 1MK appear to be cylindrical without significant expansion with altitude

SDO/AIA 171 A 28-Sep-2010 23:00:00 UT

We expect the magnetic field and the loops to be expanding

Klimchuk 2000

Why might loops be showing less expansion than that expected from the field as a whole?

- Expansion might not be resolved
- Expansion in individual loops could be constrained by currents
- Temperature variation across the loops might affect loop appearance
- Loops may have non-circular cross sections

Why might loops be showing less expansion than that expected from the field as a whole?

- Expansion might not be resolved
- Expansion in individual loops could be constrained by currents
- Temperature variation across the loops might affect loop appearance
- Loops may have non-circular cross sections

Could Observed Loop Widths be the Result of Non-Circular Loop Cross Sections?

Malanushenko & Schrijver 2013

Simpler concept: Loops with non-circular crosssections would look different from different points of view

How could we tell if this were the case?

(b)

A loop with a non-circular cross section should show variations with intensity if it twists

But this is Spectroscopy Club!

With spectroscopy we should be able to constrain the expansion of the loops *into* the plan of the sky.

A digression: How to calculate a filling factor for a loop:

 $EM = n_e^2 H f$ $EM = I / (A G(n_e,T))$

 $f = EM / n_e^2(H)$

Assume $H = D/\sin\theta = W/\sin\theta$

Н

What if $H \neq W$?

 $EM = n_e^2 H f$ $EM = I / (A G(n_{e},T))$ H= D/sin θ = EM / n_e²(f) Assume f = constant

We analyzed two loops observed by EIS on 6-Feb-2011, AR11150

Loop A in 3D

STEREO/EUVI-A 171 A 7-Feb-2011 00:14:00 UT

X (arcsec)

EIS Observations

lon	λ (Å)	Log T (K)	
ΟV	248.46	5.4	
Mg V	276.58	5.5	
Mg VI	269.00	5.7	
Mg VII	278.40	5.8	
Mg VII	280.74	5.8 h _e diagnostic	C
Fe VIII	186.60	5.7	
Fe X	184.54	6.0	
Fe XI	188.22	6.1	
Fe XII	195.12	6.2	
Si VII	275.36	5.8	
Si VII	278.45	5.8	
Si VII	275.36	5.8	
Si X	261.06	6.1	

70 min raster 101 steps, 3.9" apart 2" slit

We analyzed the loops at different locations

Determining Temperature and EM.

$$DEM = \frac{EM_0}{\sigma_T \sqrt{2\pi}} exp \left[\frac{-(T - T_0)^2}{2\sigma_T^2} \right]$$

(Warren et al. 2008)

Two EIS Radiomentric Calibrations:

- Warren, Uguarte-Urra & Landi 2013
- Del Zanna 2014

The exact loop angle not too important

Calibration, background selection and count-based uncertainties all significant for measuring D

Linear Expansion consistent with no expansion and up to 2.5 expansion over 40 Mm

Assumes constant filling factor

Loop B analysis was very similar

-650 -600 -550 -500 -450 -400 X (arcsec)

Expansion Factor for B

D(40 Mm)/D(0 Mm)

These constraints are pretty loose

Klimchuk 2000

So, what about the traditional interpretation?

i.e., what filling factor would we calculation with a standard circularcross section model?

$$f = \frac{EM}{n_e^2 H} = \frac{EM}{n_e^2} \frac{\sin \theta}{W}$$

In order to calculate a filling factor we need to measure a loop width

We used AIA data to measure the widths

Loop width selection is subjective

There are different ways to loop substructure

Malanushenko & Schrijver 2013

Filling factors for Loop A

Loop B cross sections

Loop B cross sections

Filling Factor for Loop B

These methods would have lower uncertainties with the following usual suspects:

- Higher signal to noise
- Higher resolution
 - Better to pick out small loop structures
 - Better for background selection (although interpretation of structures is still an issue)
- Better calibration
 - More rocket underflights
 - High quality reference spectra from laboratory sources
- Better atomic data

Conclusions

- The results are generally consistent with circular cross sections and no expansion.
- But also consistent with expansion factors of 3 or higher
- Very tough to determine actual cross section shape
- In theory (mostly with better data from a new instrument) the technique could yield stronger constraints
 - Calibration important both for D and f estimates.