
How do more realistic nanoflare 
distributions affect thermal 

nonequilibrium in model loops?

T. A. Kucera, J.A. Klimchuk, M. Luna



Outline

• Intro to Thermal NonEquilibrium (TNE)
• 1D modeling of TNE using discrete nanoflares
• What we already know about TNE in model loops
• Variations in nanoflare timing and intensity
• Variations in nanoflare location
• Summary of results and future plans



Thermal NonEquilibrium
TNE is a process under which heated plasma from the chromosphere 
enters a coronal loop and if it becomes sufficiently dense undergoes 
catastrophic radiative cooling to chromospheric temperatures, forming 
a condensation.



TNE is important in prominences and some coronal loops.

SDO/AIA, Mason et al 2019SDO/AIA



Goals:

• Understand conditions leading to TNE in coronal loops
• Determine how these are affected by using various distributions of intensity, 

timing and location, especially more realistic scenarios with randomly 
distributed nanoflares.

• Understand how TNE effects diagnostics of coronal loops and thus 
our understanding of coronal heating
• Determine how common TNE is in coronal loops.
• Ultimately feeds into ability to model EUV irradiance of corona



ARGOS 
• Antiochos et al. 1999
• Adaptive Mesh calculation
• 1-D hydro equations for mass, momentum, and energy

• Klimchuk & Cargill (2001) radiative loss function

https://iopscience.iop.org/article/10.1086/497531/fulltext/62635.text.html


Loop Geometric Parameters

Draft version January 11, 2021
Preprint typeset using LATEX style emulateapj v. 04/17/13

ARGOS NOTES

M. Luna1,2 and J. Klimchuck
Draft version January 11, 2021

ABSTRACT

Notes on ARGOS code

1. DESCRIPTION

In ARGOS there are three fundamental variables
that are the UNK variables. They are associated to
PARAMESH (MacNeice et al. 2000) and represent the
primitive variables, the density, the momentum and the
total energy

unk1=⇢V , (1)

unk2=⇢ v V , (2)
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being V the volume of the computational cell, v the ve-
locity of the plasma and ⇢ its density.

2. PERTURBATIONS

From a computational point of view there is a di�culty
to compute the volume at the cells, V. For this reason
we are going to give the perturbations as follows

⇢0=⇢F⇢ , (4)

P 0=PFP , (5)

T 0=TFT , (6)

(7)

in term of the three factors instead of the addition of an
extra term as ⇢0 = ⇢ + �⇢. In is important to note that
both formalisms are equivalent. The possibility that I
am implementing in the code is

F = 1 +� e�(s�s0)
2/2W 2

, (8)

where � is the strength of the perturbation, s0 is the
location of the perturbation and W is its width.
The ideal gas law should be fulfilled always in the code

P 0 = R⇤⇢0T 0 whatever is R⇤. Inserting Equations 4 - 6
in the ideal gas law we obtain

FP = F⇢ FT , (9)

the is a constrain over the possible perturbations to in-
clude in the code. With this relation we can control the
perturbation of the temperature in the ARGOS code.
Note that the temperature is not in the code.
Combining Equations 1 to 6 we obtain the perturbed

UNKs as a function of the previous UNKs and the per-
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turbations factors as

unk01=F⇢ unk1 , (10)

unk02=F⇢ unk2 , (11)
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With these relations it is not necessary to compute the
volume V at each grid cell.

3. GEOMETRY OF THE TUBES

Figure 1 shows the geometry of the flux tubes used in
the numerical experiments. Also we define the following

Soff =Sbase1 + Sbase2 , (13)

S1=Soff + 10Mm . (14)

The length of the tube is L and the length of the numer-
ical domain is L + 2S1. The initial atmosphere is set as

Sbase1

10 Mm

Sfeet

Sbase2

Fig. 1.— Caption

follows

T (s) =

⇢
TCorona |s| > S1 + Sfeet ,

TChromosphere |s| < S1 + Sfeet ,
(15)

Full Length 110 Mm 
• 80 Mm initial coronal loop 
• 15 Mm potential transition region at each end

Hyperbolic cross section

The loop actually 
still expands here



Initial equilibrium state

• Initial peak temperature 477,000 K.
• This amount of heating maintained 

through the runs.

Nanoflares
• Timing, intensity, & locations 

adjustable
• Triangular in space and time 

(duration 100 s, size 5 Mm)



Under what conditions do you get TNE?



The following conditions encourage TNE:

• Timing: Delay between nanoflares must be < time it takes 
for loop to return to initial state (includes both cooling and 
draining)
• Location: Energy release must be as close to the foot points 

as possible without actually being in the chromosphere
• Symmetry in nanoflare energy and loop cross section
• Loop Cross Section: Large loop expansion encourages TNE

*



TNE Metrics

• TNE Rate - Number of pixels 
exhibiting TNE

• Presence/Absence of TNE

• Number of Condensations per 
Time Interval

• Average Duration of 
Condensations

• Average Maximum Size of 
Condensations



TNE characteristics 
vary strongly 
depending on 
nanoflares 
characteristics



Variations in Delay Time

• Regularly repeating nanoflares
• Simultaneously in each leg
• Alternating in each leg

• Nanoflares random in intensity/time with power-law distribution 
• 15 Mm from the footpoint

Questions:  
• Do we confirm the maximum delay time (minimum frequency) for TNE?
• What are the differences in TNE between alternating symmetric nanoflare?
• How do random nanoflare distributions affect TNE occurrence?



Symmetric and alternating nanoflares show maximum 
delay time, but alternating nanoflares more complex

Nanoflares 15 Mm from loop footpoints



Lack of TNE for delays 
≈ 900 s seems related to 

the time for the pulse 
associated with a 
nanoflare to cross the 
loop.



The delay at which this “resonance” occurs increases 
with loop length



Delay =resonance

Delay>Upper Limit

Delay <Resonance

Resonance <Delay<Upper Limit



Why is this resonance interesting?

• Unlikely to happen in the real corona
• Insight into requirements for TNE
• Points out importance of sampling a range of parameters



As a function of global event time the symmetric case 
produces condensations for much higher delay times

Energy and cadence per 
global event equal
• Simultaneous case:  split 

between two legs
• Alternating case: all in one 

nanoflare



Symmetric nanoflares result in an increase in density at 
the center of the loop, which encourages TNE

Symmetric nanoflares 
(delay in each leg=1,000 s, global delay =1,000 s)

Alternating nanoflares 
(delay in each foot=2,000, global delay=1,000 s)



More Realism: Power-law intensity and delay 
distribution

• The peak heating rates are from a 
power law distribution with assumed 
slope and range in intensity.
• The delay between events is 

proportional to the magnitude of the 
first event, so these are also a power-
law.
• Intensity normalized so median equals 

the intensity normally used on the 
runs with regular cadence.



Variable delay case shows higher delay time limits on TNE 
formation than the symmetric and alternating cases



The random size/delay nanoflares produce condensation which 
stay in the loop a shorter amount of time



Variations in nanoflare location

• Regularly repeating nanoflares
• Symmetric and alternating
• Delay =300 s, Intensity =0.2 erg/s/cm3

Questions:  
• Do we confirm that nanoflares closest to the loop footpoints produce 

more TNE?
• How do nanoflares with randomly distributed locations affect TNE 

occurrence?



Simultaneous nanoflare in each leg, Delay = 300 s

Effects of Location: Number of condensations decreases 
with distance from footpoints



Symmetric nanoflares can produce TNE at higher 
altitudes than alternating nanoflares



Duration of condensations increases with distance from 
footpoints (for symmetric case, anyway)



More realism: Exponential Spatial Distributions

A separate distribution is run in each leg, with symmetric, simultaneous timing



The exponential distributions give similar results to the 
even cadence in both legs runs.

Simultaneous in both legs, Delay =300 s



The dependence of duration and size do not hold for 
the random exponential distributions



Summary

• Delay variation
• Confirms maximum delay (minimum frequency) requirement for TNE for regularly 

occurring nanoflares based on time needed for loop to return to initial state. 
• Find suppression of TNE in alternating case based on velocity of front across loop.
• For regularly recuring nanoflares with the same global cadence and energy 

symmetric, simultaneous nanoflares the critical delay is higher than for alternating 
nanoflares.

• With randomized nanoflares in intensity/time it is possible to get TNE for longer 
average delays, but the condensations stay in the corona a shorter amount of time.

• Location variation
• Confirms that TNE more likely if nanoflares near foot points
• Exponential distributions seem to give similar results with respect to the 

condensation rate



Next Steps

• Consider nanoflares randomized in both location and intensity/time

• Eventually consider effect of randomized nanoflares on diagnostics 
like DEM and time lags


