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Thermal NonEquilibrium

TNE is a process under which heated plasma from the chromosphere
enters a coronal loop and if it becomes sufficiently dense undergoes

catastrophic radiative cooling to chromospheric temperatures, forming
a condensation.
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TNE is important in prominences and some coronal loops.
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Goals:

* Understand conditions leading to TNE in coronal loops

* Determine how these are affected by using various distributions of intensity,
timing and location, especially more realistic scenarios with randomly
distributed nanoflares.

e Understand how TNE effects diagnostics of coronal loops and thus
our understanding of coronal heating

* Determine how common TNE is in coronal loops.

* Ultimately feeds into ability to model EUV irradiance of corona



ARGOS

* Antiochos etal. 1999
* Adaptive Mesh calculation
* 1-D hydro equations for mass, momentum, and energy
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https://iopscience.iop.org/article/10.1086/497531/fulltext/62635.text.html

Loop Geometric Parameters

Full Length 110 Mm

e 80 Mm initial coronal loop

* 15 Mm potential transition region at each end
Hyperbolic cross section
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Initial equilibrium state

* Initial peak temperature 477,000 K.

* This amount of heating maintained
through the runs.

Nanoflares

* Timing, intensity, & locations
adjustable

* Triangular in space and time
(duration 100 s, size 5 Mm)
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Under what conditions do you get TNE?
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The following conditions encourage TNE:

* Timing: Delay between nanoflares must be < time it takes " *
for loop to return to initial state (includes both cooling and
draining)

* Location: Energy release must be as close to the foot points v
as possible without actually being in the chromosphere

 Symmetry in nanoflare energy and loop cross section v’

* Loop Cross Section: Large loop expansion encourages TNE



TNE Metrics

 TNE Rate - Number of pixels
exhibiting TNE

* Presence/Absence of TNE

 Number of Condensations per
Time Interval

e Average Duration of
Condensations

* Average Maximum Size of
Condensations
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TNE characteristics
vary strongly
depending on
nanoflares
characteristics
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Variations in Delay Time

* Regularly repeating nanoflares
e Simultaneously in each leg
e Alternating in each leg

* Nanoflares random in intensity/time with power-law distribution
* 15 Mm from the footpoint

Questions:

* Do we confirm the maximum delay time (minimum frequency) for TNE?
 What are the differences in TNE between alternating symmetric nanoflare?
* How do random nanoflare distributions affect TNE occurrence?



Symmetric and alternating nanoflares show maximum
delay time, but alternating nanoflares more complex

TNE for Simultaneous vs.
Alternating Cadence
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The delay at which this “resonance” occurs increases
with loop length

Const. Cadence, Alt. Legs
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Why is this resonance interesting?

* Unlikely to happen in the real corona
* Insight into requirements for TNE
* Points out importance of sampling a range of parameters



As a function of global event time the symmetric case
produces condensations for much higher delay times
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Symmetric nanoflares result in an increase in density at
the center of the loop, which encourages TNE
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More Realism: Power-law intensity and delay

distribution

* The peak heating rates are from a
power law distribution with assumed
slope and range in intensity.

* The delay between events is
proportional to the magnitude of the
first event, so these are also a power-
law.

* Intensity normalized so median equals
the intensity normally used on the
runs with regular cadence.
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Variable delay case shows higher delay time limits on TNE
formation than the symmetric and alternating cases
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The random size/delay nanoflares produce condensation which
stay in the loop a shorter amount of time
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Variations in nanoflare location

* Regularly repeating nanoflares
* Symmetric and alternating
* Delay =300 s, Intensity =0.2 erg/s/cm?3

Questions:

* Do we confirm that nanoflares closest to the loop footpoints produce
more TNE?

* How do nanoflares with randomly distributed locations affect TNE
occurrence?



Effects of Location: Number of condensations decreases
with distance from footpoints
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Symmetric nanoflares can produce TNE at higher
altitudes than alternating nanoflares
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Duration of condensations increases with distance from
footpoints (for symmetric case, anyway)
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More realism: Exponential Spatial Distributions
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The exponential distributions give similar results to the
even cadence in both legs runs.

Const. Cadence, Sync. Legs,

(@)

T £ Delay=300.0 s

-: A 5 0:15 —— Constant

8 '"E : ® Avg. Exponential
o AV ® Med. Exponential
e % = 0.10

2 Bm

+-

S =l 3 0.05

O =

O =

i 'g 0.00 | ' : . ' '

E Q © 0 - 10 15 20

nflare Median Distance
from Runtime Footpoint (Mm)

Simultaneous in both legs, Delay =300 s



The dependence of duration and size do not hold for
the random exponential distributions
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summary

* Delay variation

* Confirms maximum delay (minimum frequency) requirement for TNE for regularly
occurring nanoflares based on time needed for loop to return to initial state.

* Find suppression of TNE in alternating case based on velocity of front across loop.

* For regularly recuring nanoflares with the same global cadence and energy
symmﬂetric, simultaneous nanoflares the critical delay is higher than for alternating
nanoflares.

* With randomized nanoflares in intensity/time it is possible to get TNE for longer
average delays, but the condensations stay in the corona a shorter amount of time.

* Location variation
* Confirms that TNE more likely if nanoflares near foot points

* Exponential distributions seem to give similar results with respect to the
condensation rate



Next Steps

* Consider nanoflares randomized in both location and intensity/time

* Eventually consider effect of randomized nanoflares on diagnostics
like DEM and time lags



