Cosima Breu NASA Goddard, 03/08/2023

Broadening of coronal lines in a 3D MHD loop Raster Scan model

University of St Andrews

bulk, their motions, but we can never know anything of their chemical or mineralogical structure."

Auguste Comte (1798-1857)

"We see how we may determine their [the star's] forms, their distances, their

"We see how we may determine their [the star's] forms, their distances, their bulk, their motions, but we can never know anything of their chemical or mineralogical structure."

Auguste Comte (1798-1857)

- the instrument and along line-of-sight -> Non-thermal line broadening
- Candidates: Turbulence, quasi-periodic upflows, shocks, Waves
- 15-20 km/s
- Approximately independent of instrument resolution
- 2020)
- Do simulations reproduce observed spectra?

 Unresolved motions at subsonic speeds within spatial resolution element of • Typical observed non-thermal broadening at temperatures above 1 MK:

• Underestimated in most numerical simulations (except e.g. Pontin et al.

Observed nonthermal line widths

Observation of an active region

Typical observed nonthermal linewidths: 15-30 km/s

Numerical Setup

Straightened loop model including magnetoconvection at the footpoints at the photosphere and below (and gravitational stratification)

3D resistive MHD simulation MURaM code (Voegler 2005, Rempel 2014, Rempel 2017) Computational box: 6x6x57 Mm (grid:500x500x5000)High resolution: $\Delta x = \Delta y = 60-12$ km

The loop model

- Gravitational stratification
- Spitzer heat conduction parallel to the magnetic field
- Optically thick radiative losses in the photosphere and chromosphere
- Optically thin radiative losses in the corona

Model described in Breu et al. 2022

 Compute emissivity at each gridpoint (assuming ionization eq.)

Fe XV 284 Å

5

- x [Mm] Compute emissivity at each gridpoint (assuming ionization eq.)
- Reproduce stranded loop appearance

Fe XV 284 Å

 Compute emissivity at each gridpoint (assuming ionization eq.)

- At each gridpoint: Gaussian profile (width given by thermal width) shifted according to LOS velocity
- Integrate along LOS

Fe XV 284 Å

x [Mm]

Compute emissivity at each gridpoint (assuming ionization eq.)

- At each gridpoint: Gaussian profile (width given by thermal width) shifted according to LOS velocity
- Integrate along LOS

Fe XV 284 Å

x [Mm]

- Compute emissivity at each gridpoint (assuming ionization eq.)
- At each gridpoint: Gaussian profile (width given by thermal width) shifted according to LOS velocity
- Integrate along LOS

Fe XV 284 Å

x [Mm]

- Compute emissivity at each gridpoint (assuming ionization eq.)
- At each gridpoint: Gaussian profile (width given by thermal width) shifted according to LOS velocity
- Integrate along LOS

Fe XV 284 Å

x [Mm]

 Compute non-thermal linewidth assuming the plasma is at line formation temperature

$$w_{\rm int}^{\rm synth} = \left(w_{\rm synth}^2 - \frac{2k_{\rm B}T_{\rm line}}{m_i}\right)^{1/2}$$

x [Mm] 5

Fe XV 284 Å

Synthesized Fe XV emission

Non-thermal linewidth [km/s]

0

- Compute non-thermal linewidth assuming the plasma is at line formation temperature
- Fine structure in nonthermal linewidth

Fe XV 284 Å

Synthesized Fe XV emission

Non-thermal linewidth [km/s]

- observations!

Synthesize emission for Fe XV (~2 MK)

Non-thermal line broadening of up to 30 km/s consistent with

Asymmetric profiles

Dependence on instrument resolution

- Observed from photosphere to low corona
- Coherent rotating magnetic field structure
- Energy and mass transfer
- Range of scales (km-Mm)
- MUSE: High resolution and cadence

- Observed from photosphere to low corona
- Coherent rotating magnetic field structure
- Energy and mass transfer
- Range of scales (km-Mm)
- MUSE: High resolution and cadence

l	r	r	ן		r	9	S
	۰.	۰.	2				

- Observed from photosphere to low corona
- Coherent rotating magnetic field structure
- Energy and mass transfer
- Range of scales (km-Mm)
- MUSE: High resolution and cadence

Swirls and emission

Velocity field

X-ray emission

12

10

- 8

6

- Observed from photosphere to low corona
- Coherent rotating magnetic field structure
- Energy and mass transfer
- Range of scales (km-Mm)
- MUSE: High resolution and cadence

Could MUSE detect atmospheric swirls?

MUSE Raster Scan

- Resolution: (0.4, 0.167)"
- 1s exposure
- Structure showing high line widths + blue- and redshifted emission

MUSE Raster Scan

- Resolution: (0.4, 0.167)"
- 1s exposure
- Structure showing high line widths + blue- and redshifted emission

Sit- and stare observations Doppler velocities Fe XV

Sit- and stare observation Line widths Fe XV

Sit- and stare observation Line widths

- Identify events:
- Peaks in line width (enhanced by at least 10%)

Intensity, Doppler shift and line width

Height: 16.5 Mm

Sit- and stare observation Line widths

- Identify events:
- Peaks in line width (enhanced by at least 10%)

Intensity, Doppler shift and line width

Height: 16.5 Mm

Identifying features

- What happens in the loop interior?
- Twist at locations of high line broadening

Identifying features

Heating event

- Very hot plasma > 6 MK at heating site
- Energy content: 9x10 erg²⁷
- Three strong line broadening events in 500 seconds

Heating rate in log10(T)=[6.2,6.4]

20

-20

-40

-60

-80

Heating event

- Very hot plasma > 6 MK at heating site
- Energy content: 9x10 erg²⁷
- Three strong line broadening events in 500 seconds

Heating rate in log10(T)=[6.2,6.4]

20

-20

-40

-60

-80

Fe XIX Emission

- Heating events produce plasma > 6 MK
- Emitted by plasma at temperatures of log(T) = [7.0, 7.1]
- Low filling factor -> low photon count rates
- Increase exposure time?

Time integration

- Integrate to obtain higher photon count
- Integration over ~20 s
- Signal in Doppler shift and line width retained

Fe XV

Outlook

- Distinguish between jets, swirls and shear flows?
- Loop needs to be embedded in larger domain
- Higher grid resolutions -> smaller scales
- Realistic loop geometry
- Signatures of propagation?

Synthesized Fe XV emission

x [Mm]

Conclusions

- Strands in emission, Doppler shifts and Non-thermal line width
- Increased line width co-occurring with alternating Doppler shift
- Not necessarily associated with brightening
- Velocity field shows swirls and jets
- Problem: low count rates -> need to integrate in time while not smoothing out event
- Swirls produce signatures in line width and Doppler shift, BUT: Swirls and jets can produce similar signatures