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Background and Overview

 What is the role of NASA Applied Sciences?
 Who is the Interagency Chesapeake Bay Working Group®<
 How have we progressed since last year's workshope

 What are we doing today and why?¢



NASA uses the vantage point of space to increase our understanding
of our home planet, improve lives, and safeguard our future

GPM

CYGNSS



Upcoming NASA missions relevant to water qualitye

» Plankton Aerosol Cloud ocean Ecosystem (PACE)
in Phase C —scheduled fo launch in 2022

» Surface Biology and Geology (SBG)
sfudy phase — possible launch around 2027

« Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR)

new venture class award — possible launch around 2025/2027



How do we go from research to operationse

I | ] |1 I
Mission Architecture Mission Satellite launch Data available Application of
concept [> study [> authorization [> to all users [> data

Need identified, Establish mission Design, build Collect, calibrate, Other agencies, Decision-support
Recommended requirements satellite validate data acaaemia, etc. for practical users
4 A 4 N\ "~ ™ 4 A
SBG and SeaWiFS NOAA

future PACE MODIS Coastivaich
mlssiuns V"Rs COfal Reef W&'mh,

ROFFS®, etc.
" J . J \ J . J

Entry point on timeline of various missions for initiating end user engagement

Credit: Schollaert Uz, S., G. Kim, G., A. Mannino, et al., In review




NASA Applied Sciences

bringing the benefits of space back to Earth

Managed programs Multidisciplinary areas

Health & Water Ecological Food Security &
Air Quality Resources Forecasting Agriculture
John Haynes Brad Doorn Woody Turner
SUSTAINABLE
DEVELOPMENT
D = GQOALS
Disasters Capacity Building New Missions International

David Green Nancy Searby Collaborations



Applied Sciences at Goddard

Connecting societal challenges to our basic and applied research fo improve life on Earth

Water Resources
& Food Security

- |dentify problems that
can be addressed with

Earth observations Climate Air Quality & Sustainable

Applications Public Health Development

- Develop external partnerships to
. Chesapeake
accelerate broader adoption of Bay
research advances into operations




Inferagency Chesapeake Bay Group

advancing local applications of satellite data products related to water quality and indicators of ecosystem health

» Meeting monthly since April, 2018
« August, 2018 workshop

* Diverse community (Federal, state, local agencies, universities, efc.)
« Range of capabilities (seasoned satellite data users fo non-users)

» Divergent water quality needs (spatial/temporal/spectral) and scales
e.g. health of entire watershed to fecal coliform <14 mpn & DO >3 mg/L

« Chemical, biological, physical parameters, economic indicators too



Progress since last year's workshop@¢

« Reported identified needs to SBG workshops, routine meetings, AGU
 Fleld campaign supported in theory but not looking likely

* Monthly meetings have explored new technologies, new science
 Interagency collaboration on field work, conferences, training

* Pilot project around need for bacterial and harmful algae monitoring

» Several proposals submitted



Piloting proposed interagency research projects

AqQuaculture is a growing industry
world-wide

Harmful algal blooms and fecal
coliform runoff cause shellfish bed
closures

Early warning of poor water quality
could guide sampling

Remotely sensed opftical proxies
are being explored
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What are we doing tfoday and why<

 Introduction: stakeholder, science and modeling overviews

Water Clarity discussion

Harmful Algal Bloom discussion

Networking lunch

Break-out group discussions

Perspectives from other activities, future direction

Summary and next steps



Aquaculture in the Northern Chesapeake Bay

Scott Budden

Orchard Point Oyster Co.




To farm oysters in the Northern Bay, is to farm in a challenging environment.

4

Photo Credit: Dr. Suzanne Bricker (NOAA)



Made more challenging by recent trends in weather and overall climate change.

HOW WET IS 2018?
CUMULATIVE RAINFALL RECORDS

oY e 2018 (WETTEST)
5Q" == DRIEST (1930)

= AVERAGE

DEC Photo Credit: Tim Trumbauer (ShoreRivers)

cLiMATE Q) cENTRAL

Source: Climate Central



Approved as a BMP by EPA & The Chesapeake Bay Program, farmed oysters
positively impact water quality.

———— g
e




What positive business impacts can be generated by real-time water quality
monitoring datae

Income Costs Final Cash Funding requirements
£25,860.00 £24,565.00 £1,295.00 £2,105.00
(D Cash | 1

This business is
going to fail!




Chesapeake Bay
Modeling Overview:

How can satellife information
Improve these modelse

Marjy Friedrichs

Virginia Institute of Marine Science, William & Mary

Vivis



Many Chesapeake Bay models exist

=Y
S

Bottom oxygen at a mid-Bay station

[uny
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I
|‘ observations |
=== Model mean
—— 8 individual
models

Bottom DO concentration (mgL1)

Mar ‘04 Jun ‘04 Sep ‘04

From: Irby et al., 2016

Multiple model
INfercomparison
project

Models perform
similarly well; mean
performs est

Very little use of
satellite information
so far — a missed
opportunity!
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Goals of Chesapeake Bay models

»> Scenario modeling
» Process-based modeling
» Forecasting

* Primary end users?

» |s satellite information being used?

 How could satellite information be
used?

20



Chesapeake Bay Scenario Modeling

Chesapeake Bay Program’s CH3D-WQSTM

D d Model | Model 0

. arI:olluti(t:n ?ontr::lll)::aq / o Pr:t:iz:it:n of Impacts o E P A re g U | O TO ry m O d e | / U S e d
Land Use Data Phase 6 opulation 1
e Watershed 8 G to establish the TMDLs
U.S. Census Data Model/ CAST

Agricultural Data

e« Modeled scenarios
defermine the nutrient

S

BMP Implementation Results re d U C Ti O n S re q U i re d TO

Land Use
Change
Model

attain mandated water
quality levels (e.g. oxygen,
chlorophyll, water clarity)

Airshed
Model

Precipitation Data
Meteorological Data
Elevation Data

Soil Data

= =

https://www.chesapeakebay.net/who/group/modeling_team »



Chesapeake Bay Scenario Modeling

Chesapeake Bay Program’s CH3D-WQSTM

Data and Model Inputs ==

 Primary end users

= Model Outputs

Pollution Control Data Prediction of Impacts

o Phase Chesapeake Bay managers,
Septic Data Watershed . Growth E::ran:t:
amn ModelICAST W - local governments

« |s satellite information used?
No (¢)
wemeneatinressts o How could satellite
information be used?
Model evaluation and
reparameterization

Land Use
Change
Model

Precipitation Data
Meteorological Data
Elevation Data

Soil Data

==

https://www.chesapeakebay.net/who/group/modeling_team )



SeaWiFS Chl

ChesROMS-ECB Chl Chesa ped ke qu

Process-Based
“ 2 Modeling

16 ,’\\‘ :‘(_g,.-;‘"

'3 . |n CB, satellite information is

typically used for model

Will Skill :
illmott Ski evaluation (Feng et al., 2015)

« Satellite information could be
used for parameter
opfimization through data

assimilation (as done in Mid-
Atlantic Bight: Xiao and Friedrichs,
0 20]40,b)

0
From: Feng et al., 2015 >
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Chesapeake Bay Process-Based Modeling

204 -:-'-~.E]' | \\ {}“*‘- ;‘v 7 ’]- - 8 i NI
Boe 1R Q = Signorini ef al. used neural
RN & 250 = nefwork models, in situ datq,
e L, L S satellite data & hydrodynamic
ol \““"\:\L‘,\_}: & 200 3 7= models fo study daily
N 5 A H 150 2O estuarine export of DOC from
20'- . \3,» a %E the CB and Delaware
il ‘»x?y izg %  Differences in DOC export
7R > between two estuaries due to
w0 april 28 2004 Al ? geomorphologies and
- el 70 4 freshwater inputs

20 77'0W 46' 20 76°W 4‘

From: Signorini et al., 2019 24



Chesapeake Bay Process-Based Modeling

. W . Am— 350
56 -[ 1‘;;'-”—/”;]“'.% . :\{‘ J>) );f
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37°N 100

40" April 28, 2004
L 4 f f | ’
20" 7 7OW 40' 20 76°W 40'

70

From: Signorini et al., 2019

DOC [umol L]

Primary end users

Mostly scientists/researchers
Is satellite information used?
Sometimes

How could satellite
information be used?

Model evaluation; parameter
optimization; model-data
fusion

25



Chesapeake Bay OFS Water Level Forecast Guidance

All model nowcast and forecast information is based on a hydrodynamic model and should be considered as computer-

generated nowcast and forecast guidance.
Chesapeake Bay
—77.20 : —76.40 : —75.60 : —74.80
j Forecasting

39,20
-
0758

> 7.0

6.7

8.3

....... e N
NOAA's operationdl

5.2

. CBOFS

4.2

38,40

OFee

(EECETTOTRTEPRRRE TETT PR

3.8

3.5

PR CEIIEEEEEEEPRPFEEEEEE e, 09020 SEEEEEEEERET R

3760
09°LE

3.2

Hydrodynamic variables:
salinity, temperature,
water level

2.8
...................................... ;.
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Water Level Forecast

1.0

0.7

0.3
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Time/Date: 1000 (EDT) 08/22/19 %+ | Prev | | Start Animation || Next 26



Chesapeake Bay Forecasting

Bottom Oxygen: Forecast

August 23, 2019

VIS |20
VIR TRET TTITE (2h RABIR e
ANCHOR
OrA =2

Dissolved Oxygen mg/L Healthy Waters

Hypoxic Waters

Surface pH: Forecast
August 23, 2019

VIMIS |50
Vi Tkt e ek B 1K Seir e

||||||

ANCHOR
QLA =22

pH

9
8.75
8.5

8.25

17.75

17.25

6.75

6.5

6.25

Ecological
forecasfs:
hypoxia &
acidification
1-day nowcast and 2-day

forecast automatically
produced nightly

Model results automatically
displayed on the VIMS website

hitp://www.vims.edu/hypoxia

Mobile Friendly!

27


http://www.vims.edu/hypoxia

Chesapeake Bay Forecasting

Bottom Oxygen: Forecast

August 23, 2019

VIMIS |20
= | | & Marv
WHACIK IS TRST IR 12k MBI 500

ANCHOR
OrA =2

Dissolved Oxygen mg/L Healthy Waters

Hypoxic Waters

Surface pH: Forecast

VIMS |50
- | & Mgy
Trdznmts TesT e ek R iow Sore

August 23, 2019

ANCHOR
QLA =22

pH

11 17.75

7.5

17.25

6.75

6.5

6.25

Primary end users

Ship operators, fishermen,
aguaculturists

Is satellite information
used?

Not enough!

How could satellite
information be used?
Data assimilation,
nudging to satellite fields

28



% Likelihood of observing
a P. minimum bloom

- §.100%

© 50%

I 0%

From: Brown et al., 2013

Short Term Forecasting -
future plans for HABs

Stakeholder input: “oxygen and

pH info is great, but we want HAB
forecasts!”

« Based on existing habitat suitability
model (Brown et al., 2013)

* Probabillity of finding a P. minimum
bloom is a function of: chlorophyll,
ammonium, organic nitrogen and TSS
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Moderated by:

Carl Friedrichs

Virginia Institute of Marine Science
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Carl T. Friedrichs

Virginia Institute of Marine Science

Professor of Marine Science
Associate Director, CBNERR-VA

Current Scientific Interests:

Dynamics of muddy particles and interdisciplinary applications.

Especially ramifications to water quality, clarity, and living
resources.

Especially by working with the NOAA National Estuarine
Research Reserve Program and EPA Chesapeake Bay Program.

VIVIS | &y

VIRGINIA INSTITUTE OF MARINE SCIENCE

Chesapeake Bay
National Estuarine
Research Reserve
in Virginia

4




Diffuse attenuation coefficient (K4) and
Secchi depth (Z;5) measure different light properties

Kg measures Py
— Kd=2.0m

—— Kd=1.5m"
veor Kd=0.8m"
; % Light = 100 exp [ (-Ky) (Z2) I
4 1] i 1 | I 1 i 1
1 10 20 30 40 s 60 70 80 90 100
Percentage of Light Intensity

Light Attenuation

Water Column Depth (m)

(Batiuk et al. 1992)
Secchi depth
Secchi measures Transparency

(More sensitive to scattering)

(Courtesy C. Buchannan)



CBP criteria for water clarity for SAV assumes Z. ~ 1/K4
such that Z;p xK4 = constant. But that's incorrect.

L 4 v wudSCiveu

20 Rl v %7, =3 more light scaEterDian -
0.8 - o - i B
(Data from Chesapeake main stem, g . E i 2 : E g 8 g
Gallegos et al. 2011) %0-6‘_ g B - E g E : : é : é a
§04_ Eugiéggzgéégagg "A
5] g B o f
8 gy o ®
: T © (b) OSS / (ISS + OSS)
1985 1990 1995 2000 2005 2010 o+
0.0124 , 1985 1990 1995 2000 2005 2010
Year
- Scattering of light off small organic particles 47
causes Lsp to decrease relative to K I s g N B B £ e
3 | 30cm disk \. ‘,-" ’,:” .
- Accounting for diffuse light reflected off disk at & | i i 7
. . . X 2 "9'*‘40797:7.3 Ji’j(o °
high TSS causes Zsp to increase relative to K4 B oTB-%U et o% & diffusclightand

, % 20 ¢m disk
%oo@ @0 © °
1 é'd’; ..qu' ° Y J

No diffuse light

(Data from York River and 2 other systems, EE |
from Bowers, Fall, Friedrichs et al. in prep.) 10 30 100 300

TSS (mg/L)



Assuming Ky & 1SS are only functions of reflectance using
satellites is also a problem

[ODIS NIR-SWIR

2,697 x 1074

K,4(490)

1.045 R(667)

R(488) R(488)
+ 4.18[7 x 107* + 2.7135R(667)]

2.533 x 1073

—9.817
R(488)

: {1 — 0.52exp [—

Son & Wang (2012, 2015)
TSS = 1.7 + 5.263 K4(490) mg 1

- Can we improve water clarity

satellite (and model) products

by better accounting for particle

propertiese

-1

(PAR) (m )

R(667)
R(488)

d

MODIS-derived K

MODIS TSS (mg 1)
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—
o
©

102
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_isrelatively ./ e 9
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Reflectance

— Qd"’gx) o . -
e underestimates |

[ // Ky when water

b : .

e e srmman o 3o e SVGOLHIRIG,

10 10 10° 10’

In Situ K (PAR) (m")

Reflectance overestimates TSS
- when water is relatively clear.

5% Reflectance underestimates

1 . I I . 10 100
In Situ TSS (mg 1”)

TSS when water is very turbid.



John “Rusty” McKay

Maryland Department of the Environment

Water and Science Administration
Field Services Program
Compliance Monitoring Program
Shellfish Monitoring Section
John.McKay@maryland.gov
443-996-2375 — Work Cell#

@@ o Maryland
4 Department of
“:’g: the Environment




BACKGROUND
UMBC Geography Major w/ Remote Sensing/
GIS Focus
Shellfish Monitor w/ 35 Years of Service with MDE-
Oversee the Operations of 5-Regionally
Deployed Boat Teams Baywide

CURRENT PROJECTS
UM - Prevalence of Vibrios in Water, Plankton,
and Oysters
MDE/MDH/NOAA UMES - Resubmergence Study
NASA/UM/MDNR/NOAA - Scoping Study of
Optical Signals of Bacteria in Shellfish Growing

Warters
@@ o Maryland
4 Department of
“:’g: the Environment




WATER QUALITY STANDARDS

26.08.02.03-3

.03-3 Water Quality Criteria Specific to Designated Uses.

A. Criteria for Class | Waters — Water Contact Recreation and Protection of
Nontidal Warmwater Aquatic Life.

(5) Turbidity.

(a) Turbidity may not exceed levels detrimental to aquatic life.

(b) Turbidity in the surface water resulting from any discharge may not
exceed 150 units at any time or 50 units as a monthly average. Units shall be
measured in Nephelometer Turbidity Units.

(6) Color. Color in the surface water may not exceed 75 units as a monthly
average. Units shall be measured in Platinum Cobalt Units.

(c) The wholesomeness of fish for human consumption apply in fresh,
estuarine, and salt waters.

Water Quality Criteria Specific to Designated Uses, are provided in COMAR

Section 26.08.02.03-3. They can be accessed through the web at:
hitp://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-3.htm.

Department of
“—:'g: the Environment



http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-3.htm

CHALLENGES &

Baltimnore

OPPORTUNITIES s

Washington

- Resolution

°
® —

- Temporal Coverage

Sensor Technology

Collaboration




Brooke Landry

Maryland Department of Natural Resources

e Chair, Chesapeake Bay Program (CBP) SAV Workgroup

e Oversees development and execution of the CBP SAV
Management Strategy and Action Plan

e Conducts SAV habitat assessment, monitoring, conservation,
and restoration

*Leads the Chesapeake Bay SAV Watchers, an SAV Monitoring
Program for Citizen Scientists

eServes on various steering committees and working groups to
advance our understanding of SAV trends in  relation to land-
use, microplastics, and ocean acidification, as well as
community-based social marketing to drive behavior change

¥ MARYLAND

ae<__, DEPARTMENT OF
————"NATURAL RESOURCES




Mark Trice

Maryland Department of Natural Resources

e Program Chief, Water Quality Informatics

* Manages tidal/non-tidal water quality QA, databases and
deliverables

e Directs various Maryland water quality monitoring programs for
aquatic habitats

e Oversees the EyesontheBay.net website
e Conducts water quality analyses, including clarity assessments

eServes on numerous regional workgroups regarding water
quality, data management, microplastic pollution, ocean
acidification monitoring, and near real-time satellite data (NASA
LANCE Working Group)

¥ MARYLAND

ae<__, DEPARTMENT OF
————"NATURAL RESOURCES




Submerged Aguatic Vegetation Monitoring and Assessment

Submerged Aquatic Vegetation (SAV) Program

- Annual assessment of SAV distribution and density via aerial
photography since 1984

- Data are used to assess a SAV/clarity goal for 92 Bay segments

- Use of satellite data is being explored via an upcoming STAC

workshop to make assessments efficient and sustainable

Workshop objectives:

1. To review and determine the science and technology essential to infegrate satellite image assessment into the
Chesapeake Bay SAV Monitoring Program.

2. Define the feasibility of the integration (related to the science), and document costs, benefits, and any potential
disadvantages of the integration (logistical, financial, scientific).

3. Determine the steps, information necessary, and timeline in which to officially integrate satellite data and imagery

into the SAV monitoring program.

4. Develop an integrated strategy for the overall program, including data acquisition, data processing, and data
synthesis/communication.



Water Clarity Assessment

If SAV does not meet its acreage goal, and surface
mapping data is available, a clarity assessment is
performed

Spatially intensive surface data of chlorophyll and
turbidity are spatially interpolated

Maps of Kd (light attenuation) are created from
regionally specific models that use the chlorophyll
and turbidity maps as inputs.

Kd is assessed in waters of 2 meters or less, in areas
not already having SAV, and outside of SAV ‘no
grow' zones.

The annual monthly average of acres of passing Kd
must be equal to [(SAV Goal - SAV acres) * 2.5] in

order to pass

Bathymetry (meters)

Mapping Data

Assessment Area

Turbidity (NTU)

0-75
75-15
15-225
225-30
30-375
375-45

Chiorophyll (ug/l)
0-10
10-20
20-30
30-40
40-50
50-60
60-100

=
-, o

2004 SAV Coverage (green)

Assessable Area for
Water Clarity (tan)

R &\7 %\' I
o

April 2004 May 2004 June 2004 July 2004

S xfé'\%y7
3 g&y
oo

Sept. 2004

Aug 2004 Oct. 2004

Il Passes SAV
light criteria
in 1-2 meter zone

[ ] Passes SAV
light criteria
in 0-1 meter zone

Bl Fails SAYV
light criteria
for shallow water




Richard C. Zimmerman

Old Dominion University

Professor of Ocean, Earth & Atmospheric Sciences
Co-Director, Bio-Optical Research Group

Scientific Interests:
» Ecological physiology of marine
plants and phytoplankton
« Numerical modeling of agquatic
productivity
« Aquatic optics
 Remote Sensing

OCEAM, EARTH & ATMOSPHERIC SCIENCES

Ere e OLD DOMINION UNIVERSITY




Eelgrass response to Ocean Acidification (OA)

-  OA increases eelgrass thermal
tolerance in long-term

laboratory experiments
Zimmerman, R., V. Hill, B. Celebi, M. Jinuntuya, D. Ruble, M. Smith, T.
Cedeno, and W. Swingle. 2017. Experimental impacts of climate
warming and ocean carbonation on eelgrass (Zostera marina
L.). Mar. Ecol. Prog. Ser. 566:1-15.

- Increased thermal tolerance
may allow eelgrass to persist in
the Chesapeake Bay

Zimmerman, R., V. Hill, and C. Gallegos. 2015. Predicting effects of
ocean warming, acidification and water quality on Chesapeake
region eelgrass. Limnol. Oceanogr. 60:1781-1804.

823 UM COs(aq) pH 6.5 55 UM COz(sq) pH 7.7 (ambient) 2121 823 371 107 55 M
i 2(aq) P H (aq) P 61 65 69 74 717pH

LAI  <0.576 0.577-23 2.3-4.031 >4.031

Percent cover <10% 10 -40% 40 -70% 70 -100%

b. Modeled 25° C pCO, 400 uAtm d. Modeled 30° C pCO; 400 uAtm f. Modeled 30° C pCO; 600 uAtm b. Modeled 30° C pCO,870 uAtm

ith Epiphyte: R % Wi
ith Epiphy % lll-[|ll

Depth (m, MLW) [s+0s [ +0s5-0 [lo-os Hlos-: Hlo-vs s> -2



Aqguatic Opftics and Remote Sensing

Atmospherically

- High resolution imagery
can be used to classify
submerged & floating

Hyperspectral Example from St. Joseph’s Bay, Florida

corrected image

seagrass from benthic
Olgge P W 0 12525 ‘ : e reors
- Quantify seagrass , ; Leaf Area Index
abundance and | - it

v b mm10-20
blue carbon 2030
resources " | e

- Commercial satellite

iImagery may be useful o M ot
for mapping SAV in
Chesapeake Bay B

Hill, V. J., R. C. Zimmerman, W. P. Bissett, H. Dierssen,
and D. D. Kohler. 2014. Evaluating light
availability, seagrass biomass, and productivity
using hyperspectral airborne remote sensing in
Saint Joseph’s Bay, Florida. Estuaries and
Coasts 37:1467-1489.
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Modeling Phytoplankton Productivity
INn Chesapeake Bay

Eupl\olic Depth (m)

Turbidity (mg L")

Intial Conditions: Layers:20 TEMP:15 CHL:5 TURB:1 NH4:1 NO3:5 PO4:1
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= 4
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Chris Brown

National Oceanic and Atmospheric Administration
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Christopher Brown

NOAA's Satellite & Information Service

Oceanographer

Remotely identifying species
Ecological forecasting

Use Satellite Remote Sensing &
Modeling

ATMOSp
OP\QD HE/P/O




Short-term Chesapeake Bay HAB Predictions

Karlodinium
venificum

Predicted relatfive
abundance of K.
veneficum on April 20,
2005. Legend: low: 1-
10; med: 11-2000; high:
> 2000 cells/mL

Prorocentfrum
minimum

Predicted probability of
P. minimum bloom on
May 5, 2012

Microcystis
aeruginosa

8 17 384 51 68 ni

Predicted probability of a
M. aeruginosa bloom on
February 8, 2011



Challenges

Estimating sea surface salinity at fine- to medium
spatial resolution

Acquiring observations for validation and skill
assessment

Assimilating ocean color imagery / products into
coupled physical - BGC models

Constructing a regional earth system model

Transitioning research to operations & incorporatfing
forecasts info monitoring programs

ldentifying user needs



Margaret Smigo

Virginia Department of Health

Waterborne Hazards Program Coordinator

Program Management Includes:

« Coastal Beach Monitoring and Notification
* Virginia HAB Task Force

« Waterborne llinesses Investigations

// VIRGINIA
DEPARTMENT
OF HEALTH

To protect the health and promote the
well-being of all people in Virginia.




Remote Sensing Products in Use

Cyanobacteria Assessment
Network (CyAN) -
freshwater surveillance

* Frequency of imagery updates limits
use for advisory management

« App not available on iPhone
« Use in brackish systems (Potomac)?
« Workload / capacity limitations

 Limited awareness noted across
state/municipal agencies

Overview

Canada

w

,104

A MT
6,357 28516

Google

Satellite: OLCI

Lake Lake Okeechobee1 -- 1

(1] Tube

http://bit.ly/IKgBMUL

Tap to mark or select &

="
sus| Today @ Hide All
T

Notes (0)

Source: Schaeffer et al. (/n Review). Mobile device
application for monitoring cyanobacteria harmful algal
blooms using Sentinel-3 satellite Ocean and Land Colour
Instruments. Environmental Modelling and Software.



Remote Sensing Products in Use

Chesapeake Bay Sentinel 3 o |
shellfish growing area B R "cmote Sensing
surveillance ' A - X

* https://products.coastalscience.noaa.gov/hab/
* Coordinated bloom sampling
* Spatial distribution

August 17, 2018 (rbd.tif)

- Imagery is limited fo dense SN e e ~— S
blooms NS s ¥ N 2

« Sensitivity needed for selected
species which may produce i e
TOXln O-I- |OW den Sl-l-les &NCCOS s, HAB Data Explorer - .}



Gaps in HAB Advisory Management

ashcame Flannagan Reservoir
S
Assessing Bloom Extent for Advisories
Large waterbodies ‘N
o
® «©®
Policy & Guidance L

Cell counts vs. toxin concentration
vs. hybrid approach : Lake Anna

Benthic/periphytic Cyanobacteria
River systems — assessing extent,
coverage, and floating mats

Lake Anna

State Park
Lake Ann:
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Towards a monitoring
system for HABS In
Chesapeake Bay

Shelly Tomlinson

National Oceanic and Atmospheric Administration, NCCOS
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Role at NCCOS In detection
and forecasting HABs

Oceanographer with 20 yrs of experience in Remote Sensing and developing tools and
products for HAB detection and forecasting in coastal and lake system

Assisted in the development and subsequent transition of a forecast system for Karenia
brevis blooms in Florida which became operational in 2004.

Since then have expanded the forecast system to the entire Gulf of Mexico, developed
a now operational system for cyanobacteria in Lake Erie.

Within NCCOS we have transitioned ecological models for HABs in California (C-HARM)
and Gulf of Maine Alexandrium catenella blooms developed through our external
research programs.

Currently:

* developing a surveillance system for cyanobacteria blooms in inland lakes on a
National scale through a NASA Project called Cyanobacteria Assessment Network
(CyAN)

* and improving upon the FL Red-tide forecasting effort through another NASA
Public Health project to provide respiratory irritation forecasts at every beach,
every day.



Relevant Chesapeake Bay work

Non-fluorescing

— —

True color Relative Chl a Chl fluorescence

-
/.

Aweneficum,
ryptomonad

-

Noev 18, 2016
& EUMETSAT

Cesa

acteria

Developing and providing algorithms
for bloom monitoring routinely to MD
DNR, MDE, VA Dept. of Health and
VIMS from OLCI since 2016

(1) Red Band Difference (RBD) (Amin et al., 2009)

(2) Red-edge (Gilerson, 2010)
(3) Cyanobacteria Index (Wynne et al., 2008) modified by a negative shape at 620 nm



| Surveillance of HABs based on
. optical characteristics and
ological associations

M. polykrikoides A. monilatum

*Photos courtesy of
W. Vogelbein, VIMS

e T T

Prorocentrum minimum

Heterosigma akashiwo

Karlodinium veneficum

At pycnocline in winter-
early spring.

Mixed to surface in May
Stable stratification
>15°C

Salinity =15

Forms subsurface at thin
layers

e and

Alexandrium monilatum
Margalefidinium
polykrikoides (formerly
Cochlodinium)
Microcystis aeruginosa

Heterocapsa rotundata

Leptocylindrus minimus

Cryptomonad

Heterocapsa lanceolata

Heterocapsa triquetra

Wide P
salinity tolerance

Warm water

Follow rain events

Fresh to brackish

Upper oligotrophic and
mesohaline (Marshall, et
al., 2005)

Upper oligo-mesohaline
(Marshall, et al., 2005)

Associated with salinity
fronts (Tyler and Stumpf,

Increased [DON], [DIN]
[DIP]

Seems to follow prey
concentrations

Increased [N] and [urea]

Increased [P] and [amino
acids]
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Typically in Spring

Summer-fall in the
Chesapeake region,
different elsewhere
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(M _shall, ¢~ al., 2005)

- ~mer
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L. SUmmer into fall

‘Ninter (Marshall, et al.,
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Middle River
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Throughout the Bay and
Tributaries

Throughout the Bay and
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Throughout the Bay and

Tributaries

Throughout the Bay

York, James and
Rapahannock Rivers
Lower Bay

Tributaries

Throughout the Bay and
Tributaries (Marshall, et
al., 2005)

Throughout the Bay and
Tributaries

Mid Bay

Lower to mid Bay

Occurs post-diatom
bloom

In other regions it follows
diatom blooms likely due
to decreased [Si]

Associated with
cryptomonad
concentrations

surface aggregates may
not well represent entire
population

Cyst formation

Cyst formation

Daily vertical migration
Poorly grazed

Cold water, may precede
diatoms blooms

Warm water

Cold water

high

Low

Chesapeake Bay near

OLCI RBD Aug 30, 2016

OLCI RBD Aug 14, 2016
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Antonio Mannino
NASA GSFC

Positions:
Research Oceanographer,

PACE Deputy Project Scientist,
GLIMR Deputy PI

Background:
Aquatic Biogeochemistry and Ecology,
Coastal Carbon Cycle,
Ocean Color Remote Sensing




Chesapeake Bay relevant CICTIVITIeS

Monthly DOC flux
HEEE Chesapeake Bay Mouth
At i T

Coastal carbon fluxes

Sources and fransformations - e
of OM from river to ocean S ol &

Biogeochemical modeling T IZALAY s A I =

-0.2 Nictance (Sniith ta Narth in km)

Linking opfical propertiesto | ' Signorini, Mannino, Friedrichs,

biogeochemical variables P o RO
for new satellite algorithms -« e il
DOC, CDOM, POC, SPM, o :
phytoplankton : Z

PACE and GLIMR missions :

Applications of satellite data ©| e

for water quality & HABs oo oK o e

Mannino, Signorini, Novak, et al. Phytoplankton spectral Iibrary:
2016, JGR Biogeosciences Lomas, Mannino, Neeley, Vandermeulen



Future Directions In
Chesapecke Bay Water
Quality Modeling

Christa Peters-Lidard

Deputy Director for Hydrosphere, Biosphere, and Geophysics
Earth Sciences Division
Goddard Space Flight Center




1. EXISTING CHESAPEAKE 2. NASA MODELS AND DATA
BAY MODELS ASSIMILATION CAPABILITIES

Outline

3. OPPORTUNITIES FOR
COLLABORATION




Chesapeake Bay Models and Tools

Land Use

Decision Change Model WATERSHED
Models/ SRS
Databases

Related
Tools
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Atmospheric Data Assimilation: GMAO GEOS
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Ocean Data Assimilation: GMAO NOBM
(NASA Ocean Biogeochemical Model)

Assimilated MODIS
Chlorophyll 2012 (mg m3)

NOBM within GEOS-5 Framework

~

owmoouig

GEOS-5 Atmospheric General
Circulation Model

Radiative
Model (OASIM)
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Biogeochemical PRRCE AT AT Model RO o on
— rients
Process Model Advection-Diffusion (MOM) DOC, DIC, pCO;
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Land Data Assimilation: North American LDAS

NLOAS - Past Week Precipitation Anomaly {mm/day} Ensemble—Maan — Current Top |M Soil Moisture Percentils
Valid: AUG 17, 2019 NCEP MLOAS Producta  Valid: AUG 17, 2019
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Land Data Assimilation Capabilities

_ CLOUDS &
7 WATERVAPOR
8
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Figure 1: Snow water equivalent (SWE) based on
Terra/MODIS and Aqua/AMSR-E. Current
observations will be provided by JPSS/VIIRS and
DWSS/MIS.
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Figure 3: Daily soil moisture based on

Aqua/AMSR-E. Current observations are
provided by SMAP.
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Figure 4: Changes in annual-average terrestrial water
storage (the sum of groundwater, soil water, surface
water, snow, and ice, as an equivalent height of water in
cm) between 2009 and 2010, based on GRACE satellite
observations. Future observations will be provided by
GRACE-FO.
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Figure 2: GLASS Leaf Area Index from 1982-2007. Current
LAl observations are provided by Landsat, MODIS, and
VIIRS.
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Figure 5: Current lakes and reservoirs monitored by
0OSTM/Jason-2. Shown are current height variations
relative to 10-year average levels. Future observations will
be provided by SWOT.



NLDAS Soil moisture, Evaporation, and LAl for TX Drought

RootMoist — Texas 2011 Drought

NoahMP-3.6
Groundwater
Dynamic veg.

NoahMP-3.6.WRF

Groundwater
WRF default veg.

NoahMP-3.6.SIMTOP
Equilibrium WT
WRF default veg

=¥ NoahMP—-3.6.Noah

Noah free drain.
WRF default veg.

[mm day-1]

Evap — Texas 2011 Drought

NoahMP-3.6
Groundwater
Dynamic veg.

NoahMP-3.6.WRF
Groundwater

WRF default veg.

NoahMP
Equilibrium WT

WRF default veg

NoahMP-3.6.Noah

Noah free drain.
WRF default veg.
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LAl — Texas 2011 Drought

NoahMP-3.6
Groundwater
Dynamic veg.
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Groundwater
WRF default veg.
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Leaf area too low
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LAl Data Assimilation Impacts

0.30

0.29 1

0.28 1

Volumetric soil moisture [m*"3 m-3]

0.17 4

0.16 1

0.15

Top 1T—m soil moisture — Texas 2011 Drought

0.27 1
0.26 1
0.254
0.24
0.23
0.22 1
0.21 4
0.20
0.194

0.184

—  Open Loop
— — — — LAl DA

JUL oCT JAN
2010 2011

2.4

2,21
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0.0

GLASS LAl
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2011

* LAl data assimilation with the 8-day GLASS LAI fixes soil moisture and LAl.

LAl — Texas 2011 Drought




LAl DA improves this drought in Noah-MP

e onus et 0 Dynamic vegetation with LAl DA Dynamic vegetation NLDAS

Noah—MP—3.6.LAl RootMoist percentile — Aug 09, 2011 Noah—MP-3.6 RootMoist percentile — Aug 09, 2011
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Opportunities for NASA Models & Satellite Data
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GLl MR — Geosynchronous Littoral Imaging and Monitoring Radiometer

Hyperspectal (350-1040 nm) ocean color sensor in Geostationary orbit (launch ~2026/2027)
» Targeting Gulf of Mexico and other coastal waters of N. and S. America including Chesapeake Bay
e Sub-hourly imaging frequency; spatial resol. of 300 m (nadir) or ~400 m over Chesapeake Bay

Short Term Coastal Processes: Phytoplankton Growth and Physiology
How high frequency fluxes of sediments, organic Understanding processes contributing to rapid
matter, and other materials between and within changes in phytoplankton growth rate and

coastal ecosystems regulate the productivity and community composition.
health of coastal ecosystems.

. Carbonate
*  Whiting Events

‘\_—‘—?}

- Tidal Currents

veee o  Dissolvedand
Episodic/Seasonal Particulate Carbon s 6.8
River Discharge| « £ = TSP WRa '

E—

Phytoplankt% Mixing
Physiology and @

Bloom Evolution 1

6.7
6.6

: 6.5
Sediment|Exchange Upwelling

6.4

Oxygen (mg O, L)
Chlorophyll-a (mg m-)

6.3

APPLICATIONS: Formation, magnitude, and trajectory -

8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00

of harmful algal blooms (HABs) and oil spills Time of Day (hr)
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EVI-5 Managed by UNH: Joseph Salisbury (P1), Antonio Mannino (Deputy PIl); Data Processing by NASA OBPG; Instrument by Raytheon



GLIMR — Benefits to Chesapeake Bay Models

Enables evaluation of Chesapeake Bay biogeochemical
model output and predictive capability at relevant
timescales (from sub-tidal to seasonal and beyond)

* Fluxes and productivity
Data assimilation of GLIMR data products can improve
predictive capability of Chesapeake Bay models
Derivation of carbon budgets

* Fluxes within and between ecosystems
Encourages development of new tools that integrate
satellite observations and predictive modeling for coastal
resource management and decision making such as
required for Integrated Ecosystem Assessment,
protection of water quality, and mitigation of HABs.

Vﬁg;l:le Short Description
Rrs Spectral remote-sensing reflectance
a Total absorption coefficient
ag Phytoplankton absorption coefficient
aCDM CDOM+detritus absorption coefiicient
aCDOM CDOM absorption coetticient
bbp Particulate backscattering coefficient
Kd Diffuse attenuation coefficient for
) downward irradiance )
KPAR Diffuse attenuation coefficient for PAR
Zeu Euphotic depth
SCDOM | CDOM absorption spectral slope
aNAP Non-algal particie absomtion
Chl-a Chlorophyllconcentration
SPM Suspended particulate matter
Pigments | Phytoplankton pigments
POC Particulate organic carbon
DOC Dissolved Organic Carbon
Flux Fluxes of SPM, DOC & POC
FLH Fluorescence line height
PAR Daily PAR
NPP Net primary production
PSD Particle size distribution
PFTs Phytoplankton functional types
AOT Aerosol optical thickness
SC Surface Ocean Currents
NCP Net community production of POC
WTC Water Type Classification
AVWI Apparent Visible Wavelength Index




Model-Satellite Data Fusion Opportunities

E SCENARIO
INPUTS BUILDER
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Modeling References

e Atmosphere: https://gmao.gsfc.nasa.gov/GMAO products/
 Real Time
e Seasonal
e Reanalysis/Historical

* Ocean: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-NOBM/
e Land/Hydrology: https://ldas.gsfc.nasa.gov/

* Open Source Software Framework for Land Data Assimilation:
https://lis.gsfc.nasa.gov



https://gmao.gsfc.nasa.gov/GMAO_products/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-NOBM/
https://ldas.gsfc.nasa.gov/
https://lis.gsfc.nasa.gov/

Ecological Forecasting
and Future Directions

Woody Turner

National Aeronautics and Space Administration




Keeping Fisheries
from Encountering

the Endangered
Atlantic Sturgeon

Commercial fisheries in the Delaware Bay are more
than happy to avoid the endangered Atlantic

Sturgeon. With risk alerts from the new Atlantic

Encounter Risk:
i o e Sturgeon Forecast Warning System, they can.
Date Selected 1 Day Forecast for 2 Day Forecast for
2018-05-30 2018-05-31 2018-06-01

STORY LINK:
https://www.udel.edu/udaily/2018/april/sturgeon-text-alert-system/



https://www.udel.edu/udaily/2018/april/sturgeon-text-alert-system/
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Also Decadal Survey Designated Observables: e.g., SBG and

A-CCP; also the new EVI GLIMR!




Monitoring of Nature to the Present Da
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It’s Not Just NASA
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Machine Learning Algorithms for
Satellite Remote Sensing of Water
Quality in the Chesapeake Bay

Marvin Li, Greg Silsbe

University of Maryland Center for Environmental Science




Outline

« Data collection and assemblage

Moderate Resolution Imaging Spectradiometer (MODIS) reflectance
data from the Aqua satellite was combined with in-situ chlorophyll and
TSS measurements in the Chesapeake Bay.

Support Vector Regression
Relevance Vector Machine

Artificial Neural Network

 Monthly Climatology Plots of Chesapeake Bay

Monthly averages of remote sensing reflectance were inputted
Into the best performing model and then compared to known
seasonal variations in chlorophyll.



Total Suspended Sediment

Table 2

Model Types R%, RMSE q, MAE , MAPE ME Sparsity
RVM 0.48 0.16 0.12 14.47% 0.024 RVs[%]: 0.03
SVM 0.49 0.16 0.12 14.44% 0.019 SVs[%]: 0.61
0.05 0.84 0.46 57.67% -0.408 AlC: 2422.67
Ondrusek et al., 2012 0.37 0.19 0.13 16.36% 0.045

ang et al., 2009 0.34 0.18 0.14 18.76% -0.04



Chlorophyll a

Table 1

Model Types R%, RMSE, MAE 4, MAPE ME,,  Sparsity
RVM
0.51 0.19 0.15 21.89% -0.011 RVs[%]: 0.005
SVM
0.44 0.21 0.16 24.38% -0.009 SVs[%]: 0.49
0.40 0.28 0.17 24.85% -0.092 AlC: 2400.40

NASA OCM 3

0.09 0.37 0.28 41.72% -0.135



Monthly Climatology inferred from RVM on MODIS-Aqua
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Conclusions

* Three machine learning algorithms were developed for retrieving chlorophyll and
TSS from satellite remote sensing, and their predictive skills were compared
against the NASA operational ocean color OCM3 algorithm and previous TSS
algorithms.

 Advanced kernel methods such as support vector machine and relevance vector
machine demonstrated superior skills in retrieving water properties in optically
complex coastal waters.

- The artificial neural network model used multiple hidden layers to fit into the
training data and performed poorly on the independent testing data, thereby
suffering poor generalization performance.

 RVM's predictions consistent with seasonal variations of chlorophyll in the
Chesapeake Bay.



