
Abstract- High-speed network and grid computing have 
been actively investigated, and their capabilities are 
being demonstrated. However, their application to 
high-end scientific computing and modeling is still to 
be explored. In this paper we discuss the related issues 
and present our prototype work on applying XCAT3 
framework technology to geomagnetic data 
assimilation development with distributed computers, 
connected through an up to 10 Gigabit Ethernet 
network.  
 

I. INTRODUCTION 
 
The method of ensemble simulation has been widely used 
to analyze observations and make predictions with 
numerical models in which known physics and 
observations are integrated to forecast changes in the 
future. A well-known example is weather forecasting [1]. 
In this approach, a suite (ensemble) of numerical tests is 
used to obtain the best estimation used for optimal 
forecasting.  The ensemble size often varies for different 
geophysical problems. A typical ensemble size is 
approximately 30 independent numerical tests.  It is not 
unusual to have a much larger ensemble size.  
 
More recently, data assimilation has been used in solid 
Earth science, where even more complicated global 
models are used to predict geophysical environment 
changes over much longer geological periods [2]. Another 
on-going area of research is geomagnetic data 
assimilation [3], in which surface geomagnetic data over 
the past several thousand years will be assimilated into 
geodynamo models to predict geomagnetic secular 
variation on time scales of several decades and longer.  
 
One challenge these solid Earth science research activities 
share is the unprecedented demand on computing 
resources. Consider one geodynamo model, the MoSST 
(Modular, Scalable, Self-consistent, Three-dimensional) 
core dynamics model [4,5], as an example for illustration.    
With a modest truncation level of (40, 40, 40), the 
numerical model requires 500 MB RAM and 1012 flops 
for a single numerical test. Considering that for 
geomagnetic data assimilation, the truncation level may 
increase to (200, 200, 200), then one numerical test shall 
require 700 GB RAM and 1016 flops.  For a successful 
assimilation, we expect a minimum of 30 such tests. With 
current available computing capabilities, it is neither 

practical nor obvious that such a grand-scale computation 
can be carried out in a single supercomputing facility.  
 
However, such ensemble tests are nearly independent: 
individual initial states are generated for each test.  The 
final assimilated results will then be collected for 
analysis. And new initial states will consequently be 
generated for further simulation.  Therefore, there is very 
limited communication among the individual ensemble 
tests. Such a modeling nature can be ideal for grid-
computation application.  
 
Here we will focus on establishing a system to predict 
geomagnetic secular variation on decadal and longer time 
scales, utilizing surface geomagnetic/paleomagnetic 
records and the MoSST core dynamics model. In this 
approach, model forecast results and observations are 
weighted to provide the initial state for assimilation. 
Typically 30 independent numerical tests are necessary 
for a reasonable ensemble size. This could easily require a 
computing cycle on the order of petaflops and larger.   
  
A single supercomputing facility for such studies is an 
optimal choice, but is not practical given that 
requirements for computational time and memory exceed 
its capabilities.  However, it is relatively easy for users 
(researchers) to manage because of a unified system 
environment. 
 
Grid computing can be a much better choice so that 
independent numerical tests can be carried out on 
different systems.  However, researchers (users) have to 
deal with heterogeneous system environments and other 
problems, such as those in network communication.  
 
In this paper, we will discuss the issues of effectively 
applying grid computing to high-end computation and 
present a practical case: managing a distributed ensemble 
simulation. We will describe a prototype based on the 
XCAT3 [6] framework and illustrate it through running 
an ensemble of geodynamic applications on distributed 
computers, which are connected through an Ethernet 
network with speeds up to 10 gigabits per second. The 
relevant activities of building a high-speed network at 
NASA Goddard Space Flight Center (GSFC) will be 
reported. 
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II. GRID COMPUTING IN HIGH-END 

COMPUTATION 
 
Grid computing integrates networking, communication, 
computation, and information to provide a computation 
and data management capability that forms a virtual 
platform for information [7]. Recently the Open Grid 
Services Architecture (OGSA) has been proposed to 
standardize grid computing. Grid-enabled applications are 
being demonstrated. A recent development in high-speed 
networks, the National LambdaRail, enables 
transportation of huge amounts of data across the U.S. [8, 
9]. At GSFC, a project is being carried out to connect 
GSFC to the National LambdaRail [10]. 
 
Grid computing, armed with LambdaRail technology, 
provides a good opportunity for distributed high-end 
computing applications. There are two kinds of such 
applications: tightly as well as loosely coupled. One 
tightly coupled application is climate modeling. A typical 
Earth system model consists of several complex model 
components, such as atmosphere, ocean, land, and sea-ice, 
coupled together through frequent data exchanges. In a 
decadal climate simulation, an ocean model has to 
exchange information with an atmosphere model at least 
once a calendar day. But ensemble forecasting is a loosely 
coupled application. In that case, individual simulations 
are independent of each other. Only the ensemble driver 
needs to take the feedback of the ongoing individual 
simulations and consequently constructs the running 
conditions, such as initial conditions, for the individual 
simulation to be dispatched.  
 
In principle, grid computing over a Lambda network 
should support loosely as well as tightly coupled 
applications. However, the political issues among 
different supercomputing centers, such as coordinated job 
schedules and immature network connectivity, make the 
tightly coupled applications less favorable, although a few 
special simulations can still be demonstrated.  We believe 
that loosely coupled applications, such as ensemble 
simulations, will prevail in the current environment.  
 
In the next section, we will present our prototype of 
managing distributed ensemble simulations based on the 
XCAT3 framework. 

III. DESCRIPTION OF THE PROTOTYPE  
 
Our goal is to use grid computing technology as 
middleware, dispatching a set of ensemble jobs to 
different computers across networks, collecting feedback 
from dispatched ensemble jobs, constructing new running 
conditions (such as initial conditions), and dispatching 
another set of ensemble jobs. This middleware should be 

portable across different computer platforms and user-
friendly. 
 
We chose XCAT3, a Common Component Architecture 
(CCA)-compliant framework, since it is implemented in 
Java, which ensures portability. In addition, its component 
employs   CCA’s Use-Provide System Pattern [11] and 
can be assembled and executed easily with a Jython [12] 
script as well as a Web-based graphical user interface 
(GUI) tool [6].  
 
XCAT was also developed to satisfy the Open Grid 
Standard Interface (OGSI) specification. In this way, its 
components are accessible via standard grid clients, too. 
XCAT employs the Remote Method Invocation (RMI) 
mechanism implemented by XSOAP [13] to allow 
communication and control among local and remote 
components. Merging the two standards (CCA and 
OGSI), XCAT uses an approach where a component is 
modeled as a set of grid services.  

  
In our prototype, the XCAT3 framework is used to handle 
network communication, but we develop XCAT3 
components to send and receive messages as well as 
execute the commands on those ensemble members. In 
each component, there are five standard interfaces 
[initialize(), run(), finalize(), provideCMD(), and 
useCMD()] to be implemented. In addition, a standard 
data type, geoCMD, is used to exchange data among 
components. This definition of a component is similar to 
the ESMF-CCA Prototype [14, 15]. 
 
There are two kinds of implementation for this type of 
components: One is to dispatch the messages to 
distributed ensemble members or collect the messages 
from ensemble members. Another is to receive the 
message from the driver and execute the message on 
ensemble members, such as invoking the command, 
mpirun, and sending the feedback. The function, 
initalize(), sets up initial messages; provideCMD()  offers 
its message for other component to use; useCMD() takes 
the message from other component;  run() acts on the 
taken message and gives the feedback; finalize() cleans up 
the system, such as file closure and port disconnection. 
 
CCA components interact by adhering to the Uses-
Provides design pattern. This means that each component 
publishes the functionality that it allows other 
components to access. These published methods are 
known as Provides Ports. Each component also publishes 
the functionality that it needs to have other components 
perform for it. These published methods are known as 
Uses Ports.  Conceptually a ‘port’ can be thought of as a 
contract between components of a system. It is the 
equivalent of Java interfaces and pure abstract class 
definitions in C++. The CCA framework includes one 



additional type of port. The ‘go’ port is the starting point 
for executing systems of components. Driver components 
implement the  ‘go’ port. They schedule and control the 
running sequence of components. A CCA-compliant 
framework, like Ccaffeine [11] or XCAT, is responsible 
for connecting and managing ports.  For example, a 
component, driver, with a Uses Port of name geo1Use 
and type CMD, can be connected to another component, 
geo1, with a Provides Port of name geo1Provide and the 
same type, CMD (see Figure 1). The connection is carried 
out in the run time. 

 

 
Figure 1 Illustration of coupling two components using 
CCA. 

 
In XCAT3, each component is developed in Java, 
compiled as a Java class (.class), and stored in an 
individual directory. With a Jython script, a user lists 
Provides components and Uses components, specifies 
their locations (e.g., file directory and computer machine), 
and then chooses one of three mechanisms to handle 
creation of the components: local, SSH, or gram [which 
uses the Globus’ Grid Resource Allocation and 
Management (GRAM)]. After that, live instances of the 
components are created on the target computer machine 
and the Provides Port and Uses Port of the components 
are connected, and the execution of the program starts by 
invoking the go method of the driver component.  

IV.  CONFIGURATION TO TEST THE PROTOTYPE 
 

We dedicated five computer nodes in a Linux cluster to 
mimic a distributed computing environment. There are 
two processors in each node. The five nodes are divided 
into three groups: one, two, and two nodes. Each group 
has its own local disk space. Each two-node group acts as 
a small cluster. We put a driver component and a 
dispatcher component, “dispatch,” on the host computer 
with one node, and two receiver components, “geo1” and 

“geo2”, on other two small clusters, respectively. For 
simplicity, we chose SSH to connect the two-node small 
clusters and the host computer. 
 
In the small cluster where the receiver component, “geo”, 
is installed, an ensemble member of the application is also 
installed. The code of an ensemble member can be serial 
as well as parallel (see Fig. 2). 
 
A parallel geodynamics code, MoSST, is chosen to 
represent an application. This code uses the master-slave 
parallel paradigm. All four processors in the small cluster 
were used for running MoSST.  The receiver component, 
such as “geo1”, is located at the master processor. The 
number of processors for slave is determined by the  
application code  rather than the grid computing code. 

 

 

Figure 2  System architecture. 

V. CURRENT OPERATING ENVIRONMENTS 
 
Our prototype is designed to support various running 
scenarios by varying the exchanged messages among 
components as well as the running sequence in the driver. 
In addition, our component interface ensures that adding a 
new receiver component such as “geo3” can be very easy. 
It is more or less a duplication of “geo”. In the following 
section, we demonstrate a typical scenario: invoking a 
parallel job in MPI on distributed ensemble members.  
 
At the beginning of a simulation, the XCAT3 framework 
creates each component. Its setService utility  registers 
the components of driver, dispatch, geo1, and geo2.  The 
Uses Ports of the driver component connects to the 
Provides Ports of dispatch, geo1, and geo2, respectively 
(See Fig. 3). The components interact through the string 
message of type geoCMD (see Fig. 4). The dispatch 
component first provides the message to the driver, and 



then the driver passes the message to the geo1 and geo2 
components, respectively.  The geo1 and geo2 
components take the message and invoke the mpirun 
command through a Java “exec” system call.  A feedback 
message on whether the invocation is successful or not is 
sent back to the driver.   
 
Using the same grid computing code, we also successfully 
ran a similar scenario for the configure where two 
computer nodes in another Linux cluster are connected 
through a 10 Gigabit Ethernet (GE) network. This 
network represented a local prototype for   the National 
LambdaRail.  It consists of two Force 10 E300 10-GE 
switches connected to two computer nodes, respectively. 
In the near future one Force 10 E300 switch will be 
replaced with an Extreme Network Summit 400-48t 1-GE 
switch, which has two 10-GE uplinks. The replaced Force 
10 E300 will be used to expand the local prototype to 
other computer resources at GSFC. 
 
Since the messages used in communicating local and 
remote components are not long, the performance 
degradation in communication is not noticeable, as 
expected. However, we did observe a delay occurring in 
the process of establishing the connection between local 
and remote components through SSH at the beginning of 
an ensemble simulation. 
 
The design philosophy of this prototype is to have 
minimum intrusiveness to the supported applications in  
the coding as well as in computational efficiency. The 
programmer only needs to modify part of the supported 
application to interact with the grid computing “geo” 
component. For example, a simulation status file with a 
specific name needs to be created so that “geo” can detect 
it and report back to the driver component. However, such 
actions take tiny time and are not expected to have any 
impacts on the computational efficiency of a 
computation-intensive application. That has been verified 
in our tests. As a matter of fact, a production-quality 
MoSST ensemble simulation with a modest truncation 
level of  (40,40,40) takes three days to complete in  a 
cluster with two dual-processor nodes without the XCAT 
framework. 

VI. DISCUSSION  
 
By testing our ensemble-dispatching prototype based on 
XCAT3 with a production-quality parallel geodynamics 
code, we believe that appropriately applying grid 
computing technology to high-end computation 
applications can be very appealing to scientists and 
engineers.   
 
Existing approaches used in running a production-quality 
ensemble simulation are more or less done by hand on a 

single supercomputer. For example, the NOAA/National 
Centers for Environmental Prediction (NCEP) use shell 
scripts and computer platform-specific libraries to submit 
one or more ensemble weather forecasting jobs into their 
IBM supercomputer, collect simulation results, and 
resubmit ensemble jobs manually. One single 
supercomputer is simply not capable of supporting an 
ensemble simulation with the necessary resolution. That 
leads the forecaster to reduce resolution as well as the 
number of ensemble members. A similar practice is also 
used at the Center for Ocean-Land-Atmosphere Studies 
(COLA) to predict El Niño-Southern Oscillation (ENSO) 
events with its coupled atmosphere-ocean model. In short, 
a tool that is user-friendly and capable of using multiple-
supercomputers is needed for the application of 
computation-intensive ensemble simulations. 

Figure 3 Relationship among driver, dispatcher, and 
receiver components. 

 

Figure 4 Flow diagram of invoking a distributed 
ensemble simulation. The data of type “geoCMD” is 
exchanged among components. 



One major goal of our prototype design is to encapsulate 
the complexity of network programming and to provide a 
user-friendly environment, which is also one of the key 
factors for a middleware to succeed. Our prototype 
achieves that goal to a great extent. A user only needs to 
customize the content of messages and specify the 
computer names where an ensemble member is to be 
invoked. However, there are several areas worth 
improving: 

 
• Add protocols for efficiently transferring a large 

amount of data among components since initial 
data or simulation outputs may be moved between 
local and remote computers.  XCAT3 developers 
are replacing the default protocol, XSOAP, with 
GridFTP. 

• Deal with feedback of a running ensemble 
simulation. An ensemble member may fail 
prematurely, output some simulation results, or 
finish. The dispatch component needs to treat the 
feedback following the flow diagram shown in 
Fig. 5. Basically, the grid computing code, “geo”, 
will monitor the performance of the application 
code, MoSST. Once an event is detected, “geo” 
will compose a message and send it back to the 
“dispatcher” component via the “driver” 
component. The dispatcher will evaluate the 
message and send its response back to “geo”. 
Recently, we have developed a system to detect 
the output of a simulation and report the finding 
back to the driver. 

• Intelligently dispatch the next ensemble members. 
Currently we treat individual ensemble members 
independently. That is, the next dispatched 
ensemble member does not depend on the result 
of the current one. In some applications, there is a 
need to construct a new running environment for 
the next ensemble simulation. As shown in Fig. 6, 
the “dispatcher” component sends the message, 
via the “driver” component, to the receiver 
component, “geo1”, at the first remote computer. 
After its corresponding application completes, 
“geo1” reports the simulation result back to the 
driver. The dispatcher evaluates the reported 
simulation result and assembles a new running 
environment and sends it to “geo2” at the second 
remote computer. 

 
Besides providing a standardized way of accessing 
distributed computing resources, grid computing also 
allows an application to access distributed data resources, 
which is especially important for those applications with 
data assimilation components. For example, the accuracy 
of weather forecasting strongly depends on assimilated 
observation data.  A variety of observation data are stored 
in a few geographically distributed centers. Currently the 

data have to be fetched together without selection, 
categorized, and then assimilated. This “centralization” 
approach is not optimal and complicates the data 
assimilation code. With grid computing technology, 
providing data can be implemented as a grid service.  One 
NOAA laboratory is proposing to develop such a system. 
Since the components, “driver”, “dispatcher”, “geo”, in 
our prototype are grid services through XCAT3, our 
prototype also can support those applications that need to 
access distributed data provided as a grid service. 

Figure 5  Flow diagram of dealing with feedback of a  
running distributed ensemble simulation. 

 
 

Figure 6  Flow diagram of intelligently dispatching 
next ensemble members. 
 
 
NASA GSFC is actively updating its network to connect 
to the National LambdaRail (NLR) (see [10]).  This 
project involves three parts: the local network, the 
regional network, and the transcontinental network. The 
initial GSFC L-Net will have an inter-building 10-GE 
backbone implemented with 10-GE inter-connected 



switches. Then the NSF-funded Dynamic Resource 
Allocation via GMPLS Optical Networks (DRAGON) 
ring is used to connect GSFC to McLean, Virginia, where 
the NLR can be reached (see Fig. 7). We will extend this 
prototype and run ensemble simulations first among 
computers at GSFC campus via the L-Net and then across 
the U.S. via the NLR and report the ongoing progress in 
the workshop. 

  

 
 

Figure 7  NASA GSFC IRAD work on regional fast 
network. 

VII. CONCLUSION 
 
We have developed a prototype for managing ensemble 
simulations with the features of grid computing. 
Preliminary testing on the prototype shows that parallel 
geodynamics ensemble simulations can be performed 
with grid technology in a user-friendly way.  
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