As part of plans to assess the throughput performance of wide-area file transfer applications, GSFC’s High End Computer Network (HECN) Team tested a HotLava six-port 10-Gigabit Ethernet network interface card (NIC) in a HECN Team-assembled workstation that costs less than $6,800 with the NIC and achieved aggregate 55+ Gbps transmits, 52+ Gbps receives and 75+ Gbps bi-directional memory-to-memory data transmissions.

The workstation consists of a 3.2-GHz single-processor (quad core) Intel Core i7 (Nehalem) with one HotLava NIC in one PCIe Gen2 x16 slot of an Asus P6T6 WS Revolution motherboard.

Transmissions between the above workstation and two other HECN Team-assembled Intel Core i7 workstations with other NICs were measured using the nuttcp (www.nuttcp.net) network-performance testing tool.

Demonstrations of similar workstations supporting 100 Gbps network testing and near-40 Gbps file transfer applications are planned in the NASA research exhibit at the SC10 conference, New Orleans, LA, Nov. 15–18.
Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (1-of-8) [Source: Bill Fink/GSFC]

Configuration of Test Workstations

- Three HECN Team-assembled Intel core i7 server systems (each a 3.2-GHz single-processor (quad core) Intel Core i7 (Nehalem), over-clocked to 3.6 GHz, on an Asus P6T6 WS Revolution motherboard):
 - One using 1 HotLava 6x10-GigE NIC
 - One using 2 Myricom 2x10-GigE NICs
 - One using 1 Myricom 2x10-GigE NIC
Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (2-of-8) [Source: Bill Fink/GSFC]

• Theoretical maximum throughput (TMT) on a PCI-E 2.0 x16 card is \(\frac{nnn}{nnn+24} \times 8/10 \times 16 \times 5 \) Gbps, where:

\[
\begin{align*}
\text{nnn} &= \text{PCIe MaxPayload on the test systems} \\
24 &= \text{PCIe protocol overhead consisting of:
1 Byte} \quad \text{Start of Packet (STP)} \\
2 \text{Bytes} &= \text{Sequence Number} \\
16 \text{ Bytes} &= \text{Header (only 12 Bytes if < 4 GB address)} \\
4 \text{ Bytes} &= \text{LCRC} \\
1 \text{ Byte} &= \text{END} \\
8/10 &= 8\text{B}10\text{B signalling encoding} \\
16 &= \text{number of lanes} \\
5 &= 5 \text{ Gbps per lane for PCIe 2.0}
\end{align*}
\]
Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (3-of-8) [Source: Bill Fink/GSFC]

- With MaxPayload defaulted to 128, the TMT = 53.8947 Gbps
- With MaxPayload increased* to 256**, the TMT = 58.5142 Gbps

*Via the setpci command not only on the 6 10-GigE interfaces, but also on all the PCIe bridges and the Intel X58 I/O Hub in the data path, and with the PCIe MaxReadReq increased from 512 to 4096 only on the 6 10-GigE interfaces

**Not 512 because 256 is the maximum value supported by the Intel X58 I/O Hub
Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (4-of-8) [Source: Bill Fink/GSFC]

- 60 Second Transmit Test With MaxPayload = 128
 - n2: 8172.4651 Mbps 28 %TX 31 %RX 0 retrans 0.07 msRTT
 - n3: 8170.6930 Mbps 28 %TX 35 %RX 0 retrans 0.08 msRTT
 - n6: 8167.1622 Mbps 28 %TX 30 %RX 0 retrans 0.09 msRTT
 - n7: 8167.5251 Mbps 28 %TX 31 %RX 0 retrans 0.06 msRTT
 - n5: 8165.5400 Mbps 21 %TX 29 %RX 0 retrans 0.06 msRTT
 - n4: 8160.1735 Mbps 21 %TX 29 %RX 0 retrans 0.05 msRTT

- Aggregate throughput: 49003.5589 Mbps
Nuttcp Sample Test Results With One HotLava Systems

6x10GE Tambora 120G6 NIC (5-of-8) [Source: Bill Fink/GSFC]

• 60 Second Receive Test With MaxPayload = 128
 – n3: 9059.9860 Mbps 25 %TX 30 %RX 0 retrans 0.12 msRTT
 – n6: 8391.6758 Mbps 16 %TX 26 %RX 0 retrans 0.12 msRTT
 – n4: 8389.4628 Mbps 16 %TX 23 %RX 0 retrans 0.11 msRTT
 – n2: 9057.1408 Mbps 23 %TX 30 %RX 0 retrans 0.10 msRTT
 – n7: 8391.6331 Mbps 16 %TX 29 %RX 0 retrans 0.11 msRTT
 – n5: 8385.0556 Mbps 16 %TX 23 %RX 0 retrans 0.10 msRTT

 – Aggregate throughput:
 51674.9541 Mbps
Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (6-of-8) [Source: Bill Fink/GSFC]

- 60 Second Transmit Test With MaxPayload = 256
 - n6: 9220.9229 Mbps 29 %TX 29 %RX 0 retrans 0.06 msRTT
 - n3: 9224.9003 Mbps 29 %TX 39 %RX 0 retrans 0.07 msRTT
 - n4: 9217.6819 Mbps 23 %TX 30 %RX 0 retrans 0.06 msRTT
 - n7: 9220.6031 Mbps 29 %TX 30 %RX 0 retrans 0.05 msRTT
 - n5: 9217.3856 Mbps 23 %TX 31 %RX 0 retrans 0.06 msRTT
 - n2: 9224.8250 Mbps 29 %TX 34 %RX 0 retrans 0.05 msRTT

- Aggregate throughput:
 55326.3188 Mbps (94.55 % of TMT)
Introduction To
GSFC High End Computing
20, 40 &100 Gbps Network Testbeds

Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (7-of-8) [Source: Bill Fink/GSFC]

- 60 Second Receive Test With MaxPayload = 256
 - n2: 8673.6754 Mbps 22 %TX 29 %RX 1 retrans 0.12 msRTT
 - n3: 8671.5590 Mbps 24 %TX 30 %RX 0 retrans 0.10 msRTT
 - n6: 8673.8524 Mbps 16 %TX 28 %RX 0 retrans 0.12 msRTT
 - n7: 8671.3342 Mbps 16 %TX 27 %RX 0 retrans 0.10 msRTT
 - n4: 8673.6880 Mbps 17 %TX 24 %RX 0 retrans 0.10 msRTT
 - n5: 8666.1076 Mbps 16 %TX 24 %RX 0 retrans 0.11 msRTT

- Aggregate throughput:
 52030.2166 Mbps (88.91 % of TMT)
Nuttcp Sample Test Results With One HotLava Systems
6x10GE Tambora 120G6 NIC (8-of-8) [Source: Bill Fink/GSFC]

- 30 Second Bi-Directional Test With MaxPayload = 256
 - n2tx: 6834.9746 Mbps 32 %TX 48 %RX 0 retrans 0.07 msRTT
 - n6tx: 6314.6360 Mbps 33 %TX 21 %RX 0 retrans 0.19 msRTT
 - n3tx: 6195.1905 Mbps 32 %TX 38 %RX 0 retrans 0.06 msRTT
 - n4tx: 8393.6009 Mbps 28 %TX 32 %RX 0 retrans 0.05 msRTT
 - n7tx: 7489.9029 Mbps 32 %TX 27 %RX 0 retrans 0.06 msRTT
 - n7rx: 6627.6585 Mbps 11 %TX 33 %RX 0 retrans 0.23 msRTT
 - n3rx: 3264.0248 Mbps 25 %TX 33 %RX 0 retrans 2.28 msRTT
 - n2rx: 5199.5641 Mbps 37 %TX 32 %RX 0 retrans 0.10 msRTT
 - n6rx: 5117.8068 Mbps 11 %TX 33 %RX 0 retrans 0.33 msRTT
 - n4rx: 6649.6623 Mbps 15 %TX 32 %RX 0 retrans 0.27 msRTT
 - n5rx: 5815.6919 Mbps 12 %TX 34 %RX 0 retrans 6.02 msRTT
 - n5tx: 7214.4784 Mbps 32 %TX 28 %RX 0 retrans 0.07 msRTT

 - Aggregate TX throughput: 42442.7833 Mbps
 - Aggregate RX throughput: 32674.4084 Mbps
 - Total aggregate throughput: 75117.1917 Mbps