NASA Goddard’s Vision* for 10 Gigabit Ethernet

J. Patrick Gary
Network Projects Leader
Earth and Space Data Computing Division
NASA Goddard Space Flight Center
pat.gary@nasa.gov
301-286-9539

Presentation for informational seminar sponsored by Force10 Networks, Inc.
NASA Goddard’s Vision* for 10 Gigabit Ethernet

*Caveat: actually merely from Pat’s point of view

- NASA
 - Earth Science Enterprise (Code Y)
 - Goddard Space Flight Center
 - Earth Sciences Directorate
 - Earth and Space Data Computing Division
Mission and Goals of NASA, its Earth Science Enterprise, & GSFC’s Earth Science Directorate

Challenges & Initiatives in NASA’s Earth Science Information Technology Program

NASA/GSFC’s Various Networks

Some Multi-GE Network R&D involving GSFC

10 GE Testing by Bill Fink (GSFC) & Paul Lang (ADNET)
NASA’S VISION

To improve life here,
To extend life to there,
To find life beyond.

NASA’S MISSION

To understand and protect our home planet
To explore the Universe and search for life
To inspire the next generation of explorers
... as only NASA can.
ESE Fundamental Science Questions

How is the Earth changing and what are the consequences of life on Earth?

- How is the global Earth system *changing*?
- What are the primary *forcings* of the Earth system?
- How does the Earth system *respond* to natural and human-induced changes?
- What are the *consequences* of changes in the Earth system for human civilization?
- How well can we *predict* future changes in the Earth system?
Earth System Science

- Sun-Earth Connection
- Climate Variability and Change
- Carbon Cycle and Ecosystems
- Earth Surface and Interior
- Atmospheric Composition
- Weather
- Water & Energy Cycle
NASA Earth Science Research Satellites

- SORCE
- QuikScat
- SeaWinds
- SeaWiFS
- ICESat
- ERBS
- GRACE
- UARS
- TOPEX/Poseidon
- Landsat 7
- Jason
- Aqua
- SAGE III
- ACRIMSAT
- EO-1
- TRMM
- TOMS-EP
- Terra
- J. P. Gary
3/23/04
Next Generation Missions

- The Earth Sensorweb Concept Involves Satellites Working In
- Intelligent Constellations, Adapting To Observed And Modeled Changes
- And Delivering Tailored Information Products From Space To Science Users

Next Generation Missions

<table>
<thead>
<tr>
<th>Mission</th>
<th>Candidate Future Missions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPOESS Preparatory Project</td>
<td>Blue Horizons</td>
</tr>
<tr>
<td>Landsat Data Continuity Mission</td>
<td>Restless Planet</td>
</tr>
<tr>
<td>Ocean Surface Topography Mission</td>
<td>Aiolos</td>
</tr>
<tr>
<td>Ocean Vector Winds Mission</td>
<td></td>
</tr>
<tr>
<td>Global Precipitation Measurement</td>
<td></td>
</tr>
<tr>
<td>Synthetic Aperture Radar</td>
<td></td>
</tr>
<tr>
<td>Orbiting Carbon Observatory</td>
<td></td>
</tr>
<tr>
<td>Chemistry/Climate Mission</td>
<td></td>
</tr>
<tr>
<td>Aquarius</td>
<td></td>
</tr>
<tr>
<td>Aerosol Polarimeter Sensor</td>
<td></td>
</tr>
<tr>
<td>Cryosphere Monitoring Mission</td>
<td></td>
</tr>
<tr>
<td>Hydros</td>
<td></td>
</tr>
</tbody>
</table>

Next generation systematic measurement missions to extend/enhance the record of science-quality global change data

Exploratory

Expeditionary research missions for new vantage points & sensor types
Components of a Future Global System for Earth Observation

Vantage Points

- **Far-Space**
 - Capabilities: L1/L2/HEO/GEO, Sentinel satellites for continuous monitoring

- **Near-Space**
 - Capabilities: LEO/MEO, Active & passive sensors for trends & process studies

- **Airborne**
 - Capabilities: In situ measurement in research campaigns & validation of new remote sensors

- **Terrestrial**
 - Capabilities: Surface-Based Networks, Ocean buoys, air samplers, strain detectors, ground validation sites

Deployable

- Capabilities: Information Systems, Data management, data assimilation, modeling & synthesis
VISION

To develop and acquire knowledge of the Earth through discovery leading to the improvement of life

MISSION

- Provide leadership and serve as a resource in Earth system science and technology
- Improve predictions of the Earth system through new observational and modeling capabilities
- Establish partnership with agencies with operational responsibility to promote Earth science applications
- Advance understanding of the evolution of the Earth System through the exploration of planets
- Enhance the Nation’s scientific and technological literacy
What characterizes our activities and what are our functions

The Earth Sciences Directorate deals with large, sustained, multi-year projects that require significant collaborative efforts. Such activities are:

- Development, design, and implementation of new satellite missions and suborbital science campaigns
- Instrument algorithm development and data analysis
- Model development and data assimilation
- Distribution of geophysical and model data products

Examples:

- Atmospheric ozone
- Land use and land cover change
- Global precipitation
- Ocean biology
- Aeronet and aerosols data sets
- International Satellite Cloud Climatology Project (ISCCP)

- Provide a resource for environmental assessment and policy decisions
Sensor Webs Could Link \textit{in situ} and Remotely-Sensed Observations With Model Outputs \& Federated Information Repositories

Sensor Webs Enable The Use Of Dynamic Targeting -- Potentially Reducing Error Growth and Improving Forecast Skill

Current GSFC Activities Are Focused on the Simulation of a Dynamic Sensor Web
InterPlaNetary Internet
Defining a New NASA Space Communications Architecture

Source: JPL, Vint Cerf, MCI
Earth System Enterprise-Data Lives in Distributed Active Archive Centers (DAAC)

EOS Aura Satellite Will Be Launched Soon
Challenge is How to Evolve to New Technologies
NASA Earth System Science IT Challenges

- EOSDIS Currently:
 - Ingests Nearly 3 Terabytes of Data Each Day
 - In 2003 it Delivered Over 25 Million Data Products
 - In Response to Over 2.3 Million User Requests
 - Making It the Largest “e-Science” System in the World

- This Capability Must Evolve To Handle Still Larger Data Volumes As Well As New Data Types (e.g. Laser-LIDAR Data)

- Earth System Modeling is a Driving Requirement for High-End Computing, and will Continue to be so as Models:
 - Increase in Resolution and
 - Are Further Coupled
 - (e.g., Atmosphere-Ocean-Land Processes)

- Other Agencies are Learning from EOSDIS and are Moving Beyond. As NASA Lays Out the Evolution of its Information Infrastructure to Meet its Earth Science Challenges Over The Next Decade, it will Again Need to Move to The Leading-Edge.
Removing Barriers to Earth Observing & Simulation

- One Current Barrier: The Low Throughput of Today’s Internet

- Even Though Internet2 Backbone is 10 Giga bits per second
 - Network is Shared Using TCP/IP Protocol

- A Remote NASA Earth Observation System User Only Sees:
 - 10-50 Mbps (May 2003) Throughput to Campuses
 - Typically Over Abilene From Goddard, Langley, or EROS
 - Best FTP with Direct Fiber OC-12: Goddard to UMaryland
 - 123 Mbps
 - UCSD’s SIO to Goddard (ICESAT, CERES Satellite Data)
 - 12.4 Mbps—1/1000 of the Available Backbone Speed!

http://www.evl.uic.edu/cavern/rg/20030817_he
Additional Factors Affecting Throughput Performance
(very partial list)

...Other than Layers 1 (Physical) and 2 (Data Link)

Network Infrastructure at Core or Edge

- Layer 7/Application: Many with non-optimal I/O designs
- Layer 6/Presentation: Huge reformatting requirements
- Layer 5/Session:
- Layer 4/Transport: Standard TCP with multiple parallel streams
 TCP-Mods: FAST, XCP, HSTCP
 TCP-Alternates: TSUNAMI, SABUL
- Layer 3/Network: IPv4 best effort vs. with DiFFServ or MPLS
 IPv6 with per-user-flow QoS features
- NIC’s, I/O bus, and CPU capabilities
Agency High End Networking

Motivation

» NASA has fallen significantly behind the state of the art in advanced networks as indicated in figure 1
» With the introduction of NASA’s newest supercomputer, the lack of bandwidth is a significant barrier to collaboration and data sharing - 2TByte per day data set cannot be effectively transferred between research teams
» Ames in conjunction with JPL and GSFC has completed a study on options for solving the problem
» Eventually the agency must solve this for all the centers and a preliminary analysis has been completed for the agency

Approach

– Ames High End Computers have been upgraded to 10Gbps capability
– Consortium formed and negotiations underway to extend Dark Fiber to Ames Site from local POP
– Cenic/National Lambda Rail NLR membership investigated - budget and plan developed. Operating costs after upgrade (~50) anticipated to be the same as current OC3-12 charges
– Design and Estimates for Router and Switch upgrades completed.
– Estimated costs at both ARC and GSFC $1M-$1.5M. Team working to identify funding.
– ISSUES - Short term - no natural owner of this problem in previous years HPCC or CICT program attempted to solve. Long Term - Maintaining balanced Computing, Network and Storage systems requires capital upgrades to the agency research networks

ECCO Ocean Modeling

Run Requirements: (Ames – JPL)
- Nov 2003 = 340 GBytes / day
- Feb 2004 = 2000 GBytes / day

Conclusion

- Not enough bandwidth for distributed data intensive applications
- Opportunities exists to work with emerging NLR high bandwidth systems but Agency Infrastructure will not support this

Research Network Capacity

Figure 1

DoE Network Challenge, 2000
Technology Emphasis Areas

Earth System Science in the future will leverage three ongoing technology revolutions:

...to enable timely and affordable delivery of Earth Science data and information to users
Difficulties (Murphy’s Law)

Technology doesn’t always work exactly as you hope it will!
Data System Technology Evolution Cycle

- Capability Needs
- Technology Projections
- Technology Roadmaps
- Identified Gaps
- Technology Development
- Peer Review & Competitive Selection
- Solicitation Formulation
- Operational Systems
- Technology Infusion
- Vision

J. P. Gary
3/23/04
23
NASA ESE Technology Planning Process
utilizes & Extends Current ESTO Processes for ESE Data Systems

- **Capability Needs Identification**
 - ESE Roadmaps
 - ESE Vision
 - ESTO Workshops
 - SEEDS Workshops
 - ESIP, REASoN Workshops
 - Etc.

- **Technology Infusion**
 - ESIP Prototypes
 - REASoN CAN
 - Infusion Initiatives*
 * Recommended

- **NASA Technology Development**
 - REASoN CAN
 - ESTO/CT Project
 - AIST NRA, BAA
 - CICT/IS NRA
 - Many Others

- **ESE DIS Capability Vision**

- **ESTO Capability Needs Database**

- **Technology Roadmaps**

- **Needs/Investment Matrix**

- **Priority Weighting Matrix**

- **Gap Analysis**
 - ESTO Support
 - New Mission Formulation
 - Stakeholder Review

- **Technology Projection**
 - ESTO Analysis & Workshops

- **ESE Research Funding Recommendations**
 - ESTO Options
 - NASA HQ Assessment

- **New Technology Infusion**
 - ESIP Prototypes
 - REASoN CAN
 - Infusion Initiatives*
 * Recommended
Goals And Objectives:
• Establish A Data Grid Between USGS EDC, NASA Goddard ADG And IPG.

Achievements:
• Phase One, A Simulated Data Fusion Algorithm Is Initiated at a Scientist’s Workstation With Processing Taken Place at Another Site
• Data Will Reside In Two Locations And Be Moved Using Grid Technology

Future Plans:
• Phase Two-- Use Real Data Fusion Algorithms Using The Grid To Demonstrate Distributed Processing of Data Sets and to Experiment With Grid Workflow Techniques

Participants: CEOS Member sites
• EOSDIS & George Mason University (GMU)
• European Space Agency (ESA)
• DutchSpace
• NOAA Operational Model Archive & Distribution System (NOMADS)
• University of Alabama – Huntsville (UHA)
• United States Geological Survey – EROS Data Center (EDC)
• NASA Advanced Data Grid (ADG)
• China Spatial Information Grid (SIG)
• ARC

NASA is Developing Grid Technologies to Enable Users to Easily Fuse Distributed Data

Committee on Earth Observation Satellites (CEOS) Grid Testbed
GSFC Networks

Mission Operations

Science & Engineering

Administrative

CNE: Center Network Environment
EOS: Earth Observing System
HECN: High End Computing Network
HST/JWSTNet: Hubble Space Telescope/James Webb Space Telescope Network
IONet: IP Operational Network
SEN: Science & Engineering Network

C. P. Gary
3/23/04
26
Notional Key Characteristics of GSFC’s Scientific and Engineering Network (SEN) and High End Computer Network (HECN)

Legend
- 100 Mbps FastEthernet
- 1 Gbps Gigabit Ethernet (GE)
- 10 Gbps 10-GE

CNE
“100 Mbps”

SEN
“1 Gbps”

HECN
“10 Gbps”

CNE+SEN Common Security Perimeter

“Production Management”

“R&D Management”

E.g. Optical Networks
Schematic of Gbps e-VLBI Demonstration Experiment

Westford

~1.5 km

Mark 4 Correlator

~650 km

Haystack Observatory

Glownet, Bossnet, MAX, NASA/HECN network segments

NASA/GSFC

J. P. Gary
3/23/04
28
e-VLBI GGAO-Haystack Data Rates Sustained During a 16-Hour-Long Evaluation Test

Max In: 970.5 Mb/s (97.1%) Average In: 210.8 Mb/s (21.1%) Current In: 168.0 b/s (0.0%)
Max Out: 978.1 Mb/s (97.8%) Average Out: 263.6 Mb/s (26.4%) Current Out: 216.0 b/s (0.0%)
GSFC SAN Pilot

Bldg A

Bldg B

Bldg C

Bldg D

Nishan Switch

Cisco Router

Lights and Gateway

Brocade FC Switch

NCSA

UMIACS

MAX

Abilene

SEN

SDSC

Linux

Nishan Switch

LightSand Gateway

Brocade FC Switch

Nishan Switch

Brocade FC Switch

Cisco Router

Lights and Gateway

Fibre Channel

IP Connections

J. P. Gary
3/23/04
30
DRAGON - Complete Network by Year 3

- MCLN: 1x2.5Gb/s
- ARLG: iwSS
- DCNE: 3x2.5Gb/s, 2x10Gb/s
- CLPK: 3x2.5Gb/s, 1x10Gb/s
- GSFC: 3x2.5Gb/s, 1x10Gb/s
- RAYexpress
- Movaz Photonic Engine
- Photonic Engine

J. P. Gary
3/23/04
31
Considerations for Transcontinental Backbone Network

- UCSD/SIO
 - Abilene
 - NLR
 - Special Level(3) lambda

- GSFC

JPG 03/08/04
National LambdaRail (http://www.nationallambdarail.org/)

- Provide an enabling network infrastructure for new forms and methods for research in science, engineering, health care, and education as well as for research and development of new Internet technologies, protocols, applications and services.
- Provide the research community with direct control over a nationwide optical fiber infrastructure, enabling a wide range of facilities, capabilities and services in support of both application level and networking level experiments and serving diverse communities of computational scientists, distributed systems researchers and networking researchers.
Network-based Limitations of Abilene
Removed with NLR

- Applications traffic must be IP-based
- 1 GE present limits at access POP’s
- Shared 10 GE backbone
- Typically 13 store-and-forward router hops between GSFC and SIO; ~75 msec RTT
- Private addresses of UCSD’s OptIPuter not advertised via Abilene
R&D Test: Move to Internet Protocol Over Dedicated Optical Lightpaths

Coupling NASA Centers to NSF OptIPuter

NASA Goddard
IT Pathfinder Working Group
Earth and Climate Scientists-
Creating a Virtual Collaboratory Between Goddard and SIO (UCSD)
Force10 E300 10 GE switch/router being readied…

For use in or as:

- Test upgrade for SEN’s inter- and intra-building GE switch infrastructure
- Multiple 1-GE up/downlink multiplexor between Beowulf clusters
- Switch/router-host for testing 10 GE NIC-based host connections
- Switch/router-host for testing 10 Gbps-capable firewall
- Test upgrade for SEN’s link with MAX/Abilene
- GSFC CPE connection for proposed 10 Gbps Lambda Network connection with UCSD/Scripps
10 GE Testing by Bill Fink (GSFC) & Paul Lang (ADNET)