Dr. Eric Hackert graduated from the University of Wisconsin in 1984 with a M.S. in Meteorology. He joined Center for Ocean-Land-Atmosphere Studies (COLA) at the University of Maryland (UMD) in 1985 where he helped to devise optimal interpolation techniques to assimilate in situ data into an early version of SODA. In May 1989, Eric moved to NASA/Goddard Space Flight Center and worked in the Laboratory for Hydrospheric Processes. In this capacity, he focused on dynamical ocean model development and validation, reduced-space Kalman filter data assimilation, wind sensitivity studies, and data analysis/validation of satellite altimetry. In October 2000, Eric joined Earth System Science Interdisciplinary Center (ESSIC) at the UMD. A main focus during 2000-2008 was the development of the Ensemble Reduced Order Kalman Filter data assimilation technique and subsequent completion of ocean observation sensitivity studies. During 2008-2014, he focused on full utilization of sea surface salinity (SSS) for oceanographic studies. In 2016, Eric received his Ph.D. in Oceanography through the Accomplished Scientist Program at the UMD. His research concentrated on determining the impact of Indian Ocean Sector on El Niño-Southern Oscillation (ENSO) predictability via the oceanic contribution, the atmospheric teleconnection, and via data assimilation. In addition, he confirmed that assimilation of Aquarius satellite SSS improved ENSO predictability.
Since joining the GMAO in Jan 2017, Eric has participated in the development of the ocean data assimilation system (ODAS) that is integrated with the current coupled forecast system. He has contributed to finalizing the optimal version of the reanalysis experiment and he has helped build code to initialize seasonal forecasts. Besides working on developing the ODAS, Eric is currently a principal investigator on the NASA Ocean Salinity Science Team with funding to explore the impacts of satellite SSS on ENSO prediction. He has found that Aquarius and SMAP SSS assimilation leads to more accurate representation of large-scale ocean waves and better ENSO forecasts. Eric will continue to develop and extend methods to assimilate ocean salinity observations into ocean models and use these results to advance scientific understanding of the Earth System. He will continue to study the coupled atmosphere-ocean dynamics of the El Niño-Southern Oscillation phenomenon.