HD 100546: a disk, a gap, and a planet ?

François Ménard, Myriam Benisty, Christophe Pinte, Wing-Fai Thi, Peggy Varnière, and the Herschel GASPS team (in part. Gwendolyn Meeus)

Institut de Planétologie et d'Astrophysique de Grenoble + a few others

> Institut de Planétologie et d'Astrophysique de Grenoble

Near IR image of HD100546

Discovered by ground based AO, Pantin et al. (2000)

The Disk and Environment of HD 100546

Grady et al. (2001) C.A. Grady (NOAO, GSFC) and the STIS Investigation Definition Team, NASA

□ Bouwman et al. (2003) Disk geometry

Dust Mineralogy

HD 100546 is a **Pre-Transitional Disk**

In this talk:

I- Fit SED -> get overall disk structure
Pre-transition disk (inner disk, gap, outer disk)

□ 2- Fit VLTI data -> improve on inner disk

set Rin, surface brightness profile of inner disk
Where's the planet?

□ 3- Fit Herschel lines fluxes -> gas content

Discovery of CH+
Other lines in GASPS spectra
CO rotational diagram

□ 4- Future work , concluding remarks

Our disk model, the SED

Calculations made with MCFOST: Pinte et al. (2006, 2009)

HD100546: sketch of the disc structure

Not to scale

up to 500 AU in CO data (see Panic et al.)

See Poster by Mulders for more on Mineralogy and the surface layer

Benisty et al. 2010; Tatulli et al. 2011

ESO-VLTI data , observing the inner disk

 $F \Theta_{\mu} S T$

HD100546: a disc with a planet at ~8 AU?

The gas disc around HD100546: an ALMA test-case

See also Panic et al. 2010

The disc is rich in hot gas (atomic and molecular)

Sturm et al. 2010 A&A 518 L129

wavelength [micron]

Fig. 1. Continuum subtracted HERSCHEL-PACS spectra of HD 100546 around the CH⁺ J=6–5, 4–3, 3–2, 2–1 (DIGIT data), and J=5-4 (GASPS and DIGIT data) lines. The 3σ statistical error levels do not include the 30% calibration uncertainty. A rotational diagram using those transitions is plotted in the lower-right panel. The errors in the diagram is the quadratic sum of all the statistical and calibration errors ($err_{tot} = \sqrt{(3\sigma_{stat})^2 + (0.3F_{obs})^2}$). Blended lines are considered as upper limits (red filled dots).

CH⁺ is located at the rim outer disc rim

inner disc outer disc Calculations made with PRODIMO: See papers by Woitke et al.; Kamp et al.; Thi et al.

Dust and gas temperature

Tgas NOT equal to Tdust

CH+ ... and a few others

Transition	λ	obs.	model 1	model 2
	(µm)	(10 ⁻¹	$^{7} W m^{-2}$)	
$[O I] {}^{3}P_{1} - {}^{3}P_{2}$	63.19	554.37 ± 167^{a}	785	763
$[O I] {}^{3}P_{0} - {}^{3}P_{1}$	145.54	35.70 ± 11.4	35.7	42.7
$[C II]^{2}P_{3/2}-^{2}P_{1/2}$	157.75	31.87 ± 10.0	12.7	17.2
$p-H_2O 3_{22} - 2_{11}$	89.90	$\leq 14.32 \pm 1.2^{b}$	4.6	7.4
$CH^{+} J = 4 - 3$	90.02	$\leq 14.32 \pm 1.2^{b}$	3.7	6.3
$CH^{+} J = 6 - 5$	60.25	10.32 ± 5.7	4.2	8.9
$CH^{+} J = 5 - 4^{c}$	72.14	6.86 ± 3.4	3.3	6.7
$CH^{+} J = 3 - 2$	119.87	2.16 ± 1.1	1.8	2.9
CO $J = 3 - 2^{d}$	866.96	0.10 ± 0.03	0.08	0.24

Table 1. Observed and modelled line fluxes

^{*a*} The total (3σ statistical + 30% calibration) errors are given for the PACS observations. ^{*b*} The blended H₂O+CH⁺ line is detected. ^{*c*} The PACS values are from the DIGIT programme (Sturm et al. 2010) except for the CH⁺ J = 5 - 4 flux (GASPS programme). ^{*d*} Data from Panić et al. (2010) with 3σ error.

The model parameters

MCFOST ^a						
	Inner disc	Surf. layer	Outer disc			
Inner radius R_{in} (AU)	0.24	13	13			
Outer radius Rout (AU)	4	50	500			
Surf. density exponent q	1	0.5	1.125			
Scale height $H_{100\mathrm{AU}}$ (AU)	6	14^{a}	14^{a}			
Scale height exponent β	1.0	1.0	1.0			
Total dust mass M_{dust} (M_{\odot})	$1.75(-10)^{b}$	3(-7)	4.3(-4)			
Dust mass ($a \leq 1 \text{ mm}, M_{\odot}$)	1.75(-10)	3(-7)	1.3(-4)			
Min. grain radius a_{\min} (μ m)	0.1	0.05	1			
Max. grain radius a_{max} (μ m)	5	1	104			
Grain power law index p	3.5	3.5	3.5			
Silicate grain density (g cm ⁻³)	3.0	3.0	3.0			
ProDiMo ^c						
ISM UV field (χ , Habing)		1.0				
viscosity (α)		0.0				
Non-thermal speed (km s ⁻¹)		0.15				
Disc inclination (°)		42				
UV excess	0.013					
UV power-law index		6.5				
Cosmic ray flux $\zeta(s^{-1})$		1(-17)				
PAH $C_{150}H_{30}$ mass (M_{\odot})	1.8(-7)					
Gas mass (M_{\odot})	5(-4) (model 1)					
Gas mass (M_{\odot})	10	(-3) (model 2	3			

Notes. ^(a) Values taken from Benisty et al. (2010) and Tatulli et al. (2011) except for the scale height $H_{100 \text{ AU}}$ at 100 AU. ^(b) $\alpha(-\beta)$ means $\alpha \times 10^{-\beta}$. ^(c) This work.

oost of Planets

□ 2 slides removed

Concluding remarks

DUST:

- Pre-Tansitional disk
- $\hfill\square$ There is a gap between ${\sim}4$ and ${\sim}13$ AU
 - may be carved by a 6-8 Jupiter mass planet
 - Difficult to detect directly (disk is bright, gap is narrow)
- □ We find it necessary to deal with scattering properly in the models
- □ Inner disk may be variable?

GAS:

- Disk rich in gas, both inner and outer.
- □ I discussed (and modelled) lines for the outer disk so far.
 - □ Working on inner disk (CO ro-vib...)
- Modelling of several lines provide first estimates of total gas mass.
- □ CH⁺ transitions up to J=6-5, first detection in a disk by Herschel
 - probe the upper rim atmosphere of the outer disc
- We developed a unique combination of continuum radiative transfer code and a thermo-chemical code to allow extensive modeling.
 - □ Axisymmetric models remain useful (see also remark by David Wilner)
 - Don't explain everything by provide good understanding of disk (structure, temperature, composition...)

From Atoms to Pebbles: Herschel's view of Star and Planet **Formation A Herschel Meeting on Star and Planet** Formation 20-23 March 2012, **Grenoble, French Alps**

Consult: http://www.herschel2012.com