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Hazard types for EM-DAT disaster records* over 20002010 Number of events reported

Total disasters : 3638

Wild Fires : 146

Wave /Surge : 18
Volcano : 64

Slides : 224

Industrial Accident : 10

Wind Storm : 103¢ 200

100

and I

1980 1984 1988 1002 1996 2000 2004 2008

Earthquake : 295

Flood : 1843

* source EM-DAT: The OFDA/CRED International Disaster Database - www.emdat.net

Floods are the most frequent natural disasters around
the globe. With climate change, floods become more

and more frequent
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In the U. S., floods caused
more loss of life and
property than other types of
severe weather events.



Background

SNPP/VIIRS data show special advantages in flood detection.

3000km swath without gaps even at the equator and constant 375-m
spatial resolution across the scan in Imager bands

Multiple observations per day in high latitudes

Particularly excellent at snow-melt and ice-jam floods due to less
contamination from cloud cover than floods caused by intensive rainfall

Initialized by JPSS Proving Ground & Risk Reduction Program,
flood detection algorithms have been developed to generate
near real-time flood products from SNPP/VIIRS imagery.



Challenges & Solutions

NDWI1

Cloud shadow is the biggest challenge for . .
automatic near real-time flood detection =

using Optical Sate"ite imagery_ — Cm — f C,,z
Cloud shadows share spectral similarity to k .
flood water, and thus it is unable to be 2"“‘\% s
removed based on spectral features. SRR e
Geometry-based method provides a good row =

solution but still suffers with uncertainty of

cloud height and cloud mask.

NDVI NDVI
»vegetation ewater @ bare land « cloud shadow

Solution: cloud shadow removal from water pixels based on geometry-
based method (Li. et al., 2013).

Based on geometric relationship between cloud and cloud shadows over spherical
surface

An iteration method is applied to decrease uncertainty of cloud heights
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VIIRS false coIor composited image, May 30,  VIIRS flood map without cloud shadow

2013 at 22:48 (UTC) removal, Mav 30 2013 at 22: 48 (UTC) |
In VIIRS false-color image (Top left), DE' _ it "‘"’T"’"'.ri_;
cloud shadows look very similar to .,

open water and they are easily
miscassified as flood water and further |
retrieved in large water fractions (Top
right).

After cloud shadow removal, these

shadows are removed from VIIRS flood VIIRS ﬂood map after cloud shadow
map (Bottom right). removal, May 30, 2013 at 22:48 (UTC) 7
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Terrain shadow is the second biggest challenge for automatic

near real-time flood detection.

Unable to be removed based on spectral features because of
spectral similarity to flood water.
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Solution: Object-based method to
remove terrain shadows from flood maps
(Li. et al., 2015).
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VIIRS false-color composited image, Nov. 15,
2014 at 21:02 (UTC)

Without terrain shadow removal,
most terrain shadows are
detected as flood water with large
water fractions (Top right).

After terrain shadow removal,
these terrain shadows are
removed from flood map (Bottom
right).
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Moderate spatial resolution of VIIRS imagery

Limited to detect minor floods

Requires flood water fraction retrieval for better
representation of flood extent than simple water/no water
mask

Solution:

Application of change detection to detect minor floods.

Dynamic Nearest Neighboring Searching method for water
fractions by considering the mixing structure of sub-pixel
land portion (Li. et al., 2012)

Downscale model to enhance the resolution of VIIRS flood
map.
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Jpé: Challenges & Solutions — Downscaling model

The inundation mechanism can be expressed as:

A= [T [V (i (h) didh

min _h

Where, A is satellite-based total water area between the minimal surface
elevation, min_h , and maximal inundated surface elevation, max_h, w;(h)
is the weight of land type i at height h in a VIIRS 375-m pixel, and f; (h) is
the total area of land type i at height h.

v' max_h: flood water surface level (the most important variable).
v Flood water depth: max_h - h.

Network analysis.

To make river flow smoothly from upstream to downstream.

To guarantee the accuracy of flood water surface level.
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_| Can we see more
from 375-m SNPP/
. VIIRS flood maps?

aaaaaa

Integration,
Downscaling

Flood Mapping Tool 375-m VIIRS flood maps
provide macro flooding
information, but are limited
to address any details.
Flood mapping tool helps
the moderate-spatial-
resolution satellite imagers

“see” more details of
floods.

Scientific models Computer systems

VIIRS downscaled 30-m flood map:

provide more flood details v
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Downscaling model: It is a model to enhance the spatial resolution of
VIIRS flood maps from 375 meters to 30 meters or 10 meters using
high resolution DEM and VIIRS 375-m flood water fraction product.

Spatial resolution Global coverage

SNPP/VIIRS Imagery 375m 3000 km every day
Downscaled VIIRS 10 mor 30 m 3000 km every day
flood maps
Lar.mdsat-8 oLl 30m 189 km 16 days
imagery

The downscaling model makes SNPP equivalent to more than
15 Landsat-8 satellites in flood mapping.

13
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The background image is experimental satellite imagery collected by NOAA's Suomi NPP, using the Visible Infrared Imaging Radiometer Suite (VIIRS).
It shows the extent of surface water as of 01 JAN 2016. It has been downscaled to 30 meter resolution and packaged into KML files by NOAA.
MVR extracted the KML images for import into GIS on 02 JAN 2016.

Rock Island District
NOTE: Surface water behind a levee should not be categorically interpreated as an overtopping. The surface water detected could be due to Emetetios Maarpent

28 DEC 2015
many situations including, but not limited to, levee seepage/boils, pre-existing surface water, or ponding due to precipation.

Great flood details from VIIRS 30-m flood maps provide incredible
information for flood investigation and evaluation.

15



Aerial photo on Jan.
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VISR 375-m flood map VIIRS 30-m flood map on Jan. 01, 2016 (overlapping on the top
aerial image, light purple is flood water)



APPLICATION: SEVERE FLOODING IN LOUISIANA IN AUGUST 2016

In August 2016, a slow moving low pressure system combined with copious amounts of
tropical moisture led to very heavy rainfall and significant flooding over portions of the
central Gulf Coast region. On August 11, a mesoscale convective system flared up in
southern Louisiana and remained nearly stationary, and as a result, torrential
downpours occurred in the areas surrounding Baton Rouge and Lafayette. Prolonged
rainfall in southern Louisiana resulted in catastrophic flooding that submerged
thousands of houses and businesses. Louisiana's governor, John Bel Edwards, called the
disaster a "historic, unprecedented flooding event" and declared a state of emergency.
The flood has been called the worst US natural disaster since Hurricane Sandy in 2012. It
was thought over 40,000 homes were damaged in Louisiana. Thirteen people have been
confirmed dead because of the flooding.

17



SNPP/VIIRS false-color image in southern Louisiana August 15, 2016 19:28 (UTC)
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The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the NPP satellite captured
the false color image (left), and the flood map derived from VIIRS on August 15, 2016
(right).
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An Overview of flooding water near Baton Rouge using VIIRS 30-m flood map
composited from August 15 and August 17, 2016. Light purple is water.
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VIIRS downscaled 30-m flood map composited from results on August 15 and August 17,
2016 (left). Compared with the aerial images taken on August 15, 2016 (right). Image
courtesy: NOAA Remote Sensing Division
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Application: Flood due to Hurricane Mathew ON

Hurricane Mathew has killed 46 people in the US, including 26 in North
Carolina, 12 in Florida, 3 in Georgia, 4 in South Carolina, and 1 in Virginia.
[102]1123] Farly estimates indicate total economic losses of at least US S4-
6 billion in the southeastern United States, prior to the widespread flooding
in North Carolina.!130

Sections of Interstate 95 in South Carolina and in North Carolina had to be
shut down as a result of hurricane flooding.[244! After 10 in (25 cm) of rain
fell in the Lumberton area on September 28 causing flooding, Matthew
dumped another 10 in (25 cm) to 14 in (36 cm),!**®l and as a result
the Lumber River reached a record 24 ft (7.3 m) in the south end of
Lumberton, breaking the record of 20.5 ft (6.2 m) feet.[?4”] |n Kinston,
the Neuse River crested at 28.31 ft (8.63 m), a foot higher than the record
set byHurricane Floyd.[**8] Preliminary estimates indicate that roughly

100,000 structures were flooded across the state and damage reached US
S1.5 billion.[250]

UNIVERSITY



SNPP/VIIRS Automatic Flood Detection Map 17 Oct. 20

16 18: SNPP/VIIRS Automatic Flood Detection Map 13 Oct. 2016 17:37(UTC)
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VIIRS downscaled 9-m flood map near
Goldsboro, NC on 17 Oct. 2016

VIIRS downscaled 9-m flood map near
Goldsboro, NC on 13 Oct. 2016

Flooding water along the Neuse River near Goldsboro receded a lot comparing to the
result on Oct. 13 2016.
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Some flooding water could be found in Princeville on Oct. 17th, but receded substantially comparing to 13

Oct. 2016.



The Neuse River keeps
large flooding water
near Kinston, but
receded a bit

comparing to 13 Oct.
2016.




Smvties 10 Oct. 2016




VIIRS downscaled 9-m flood map in Lumberton, NC on 10 Oct. 2016




¥ Days after Hurricane Matthew
flooding is still at its peak.
Along west 5th Street in
Lumberton the flood waters
3 stretch about 3 miles down the
L road. And in that three miles,
wi| hundreds of people’s lives have
B been destroyed due to the waters.

Bl John Dzienny
.
ooding is in Lumberton, North Carolina, on Wednesday, Oct. 12, 2016

VIIRS downscaled 9-m flood map in Lumberton, NC on 10 Oct. 2016
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River gauge map on Jan. 03, 2016

Evaluations against river

gauge observations.

v VIIRS flood map can provide spatial
flood extent not only showing flood
locations but also showing what

floods look like.

SNPP/VIIRS Flood Detection Map January 03 2016 18:03 & 19:50 (UTC)
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- Discussions

Cloud cover is the biggest limitation for flood detection

using VIIRS imagery, which prevents continuous detection
on flood water and causes latency to detect flood water
from intensive rainfall.

The contradiction is: no clouds, no rainfall, and then no

floods.

Solution: microwave (ATMS) (Sun et al., 2015)

Latency may prevent the product from flood prediction, but is

still okay for flood extent investigation and loss assessment.
Multi-day composition from near real-time flood maps can
obtain maximal flood extent during a flood event, and thus

reduce the impact from cloud cover.
33



We have solved the critical issues, like cloud shadow and terrain

shade problems, and made near real time flood products become

possible.

The high temporal and wide coverage of environmental satellites,
including meteorological satellites like NPP/JPSS, made them
attractive for disaster monitoring and detection, but their
moderate spatial resolution may limit their wide applications. We
developed downscale model and enhanced the capability of these

moderate-to-course resolution sensors.

Meanwhile, our model made 3-D flood products including flood
water surface level, flood water depth, and high resolution flood

maps become possible.

34
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Thanks!

Any Questions ?



