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ABSTRACT

An attempt is made to estimate the temperature changes resulting from doubling the present CO: con-
centration by the use of a simplified three-dimensional general circulation model. This model contains the
following simplifications: a limited computational domain, an idealized topography, no heat transport
by ocean currents, and fixed cloudiness. Despite these limitations, the results from this computation yield
some indication of how the increase of CO: concentration may affect the distribution of temperature in
the atmosphere. It is shown that the CO: increase raises the temperature of the model troposphere, whereas
it lowers that of the model stratosphere. The tropospheric warming is somewhat larger than that expected
from a radiative-convective equilibrium model. In particular, the increase of surface temperature in higher
latitudes is magnified due to the recession of the snow boundary and the thermal stability of the lower
troposphere which limits convective heating to the lowest layer. It is also shown that the doubling of carbon
dioxide significantly increases the intensity of the hydrologic cycle of the model.



Manabe & Wetherald predicted:

Warming lower
atmosphere

Greater warming near
the poles

Cooling stratosphere

More rain and higher
humidity

All of these things have now happened.
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Latitude

Temperature Anomaly (K)
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Unprecedented Arctic ozone loss in 2011
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Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete
removal of lower -stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is
highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over
the Arctic in early 2011 was—for the first time in the observational record—comparable to that in the Antarctic ozone
hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in
ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18-20
kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than
those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or

exceeded.

Since the emergence of the Antarctic ‘ozone hole’ in the 1980s' and
elucidation of the chemical mechanisms**® and meteorological con-
ditions® involved in its formation, the likelihood of extreme ozone
depletion over the Arctic has been debated. Similar processes are at
work in the polar lower stratosphere in both hemispheres, but differ-
ences in the evolution of the winter polar vortex and associated polar
temperatures have in the past led to vastly disparate degrees of spring-
time ozone destruction in the Arctic and Antarctic. We show that
chemical ozone loss in spring 2011 far exceeded any previously
observed over the Arctic. For the first time, sufficient loss occurred
to reasonably be described as an Arctic ozone hole.

Arctic polar processing in 2010-11

In the winter polar lower stratosphere, low temperatures induce
condensation of water vapour and nitric acid (HNO;) into polar
stratospheric clouds (PSCs). PSCs and other cold aerosols provide
surfaces for heterogeneous conversion of chlorine from longer-lived
reservoir species, such as chlorine nitrate (CIONO,) and hydrogen
chloride (HCI), into reactive (ozone-destroying) forms, with chlorine
monoxide (ClO) predominant in daylight>”.

In the Antarctic, enhanced ClO is usually present for 4-5 months
(through to the end of September)®™"', leading to destruction of most
of the ozone in the polar vortex between ~14 and 20 km altitude’.
Although ClO enhancement comparable to that in the Antarctic
occurs at some times and altitudes in most Arctic winters’, it rarely
persists for more than 2-3 months, even in the coldest years'. Thus
chemical ozone loss in the Arctic has until now been limited, with
largest previous losses observed in 2005, 2000 and 19967'>*.

The 2010-11 Arctic winter-spring was characterized by an
anomalously strong stratospheric polar vortex and an atypically long
continuously cold period. In February-March 2011, the barrier to

transport at the Arctic vortex edge was the strongest in either hemi-
sphere in the last ~30 years (Fig. 1a, Supplementary Discussion).

The persistence of a strong, cold vortex from December through to
the end of March was unprecedented. In the previous years with most
ozone loss, temperatures (T) rose above the threshold associated with
chlorine activation (T, near 196 K, roughly the threshold for the
potential existence of PSCs) by early March (Fig. 1b, Supplementary
Figs 1, 2). Only in 2011 and 1997 have Arctic temperatures below T,
persisted through to the end of March, sporadically approaching a
vortex volume fraction similar in size to that in some Antarctic winters
(Fig. 1b). In 1996-97, however, the cold volume remained very limited
until mid-January and was smaller than that in 2011 at most times
during late January through to the end of March (Fig. 1b, Supplemen-
tary Figs 1, 2).

Daily minimum temperatures in the 2010-11 Arctic winter were
not unusually low, but the persistently cold region was remarkably
deep (Supplementary Figs 1, 2). Temperatures were below T, for
more than 100 days over an altitude range of ~15-23 km, compared
to a similarly prolonged cold period over only ~20-23 km altitude in
1997; below ~19 km altitude, T' < T, continued for ~30 days longer
in 2011 than in 1997 (Supplementary Fig. 1b). In 2005, the previous
year with largest Arctic ozone loss’, T < T, occurred for more than
100 days over ~17-23 km altitude, but all before early March.

The winter mean volume of air in which PSCs may form (that is,
with T'< Tyer), Vpso is closely correlated with the potential for ozone
loss”'*""7. In 2011, Vi (as a fraction of the vortex volume) was the
largest on record (Fig. 1c). Both large V/,,c and cold lingering well into
spring are important in producing severe chemical loss™>', and
2010-11 was the only Arctic winter during which both conditions
have been met. Much lower fractional Vi, in 1997 than in 1996, 2000,
2005 or 2011 (Fig. 1c) is consistent with less ozone loss that year'®"”.
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Stratosphere-troposphere coupling
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Difference ('C) from 1961-90

Difference ('C) from 1961-90
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Seaice

Reflects sunlight

Blocks heat exchange
between the ocean below
and the air above




Albedo Feedback

Increasing
greenhouse
gases

> Warming

=

Reduced albedo,
»| more absorbed
sunshine

Melting snow and
ice




Sea Ice Insulation Feedback

Increasing
greenhouse
gases

Warming

=

Thinner ice

More heat flowing
upward from the
warm ocean




Sea Ice Extent (x10 ™ 6 km2)

Arctic Sea Ice Extent
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Total Ice Volume [1000 km’]
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CMIPS5 results
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Summer Minimum (September)
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Forecasts for the 21st Century

B1 2011 2030

B1: 2046-2065 B1: 2080-2099

A1B: 2080-2099

A2 2080-2099
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Predicted warming over the 21st century
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Precipitation:
Late 21st century minus late 20th century

multi-model DJF

JJA

The wet get wetter and the dry get drier.



Annual River Discharge (km3)
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Halocline

Salinity in PSU
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Two Greenhouse Indices

Global Mean Bulk Emissivity
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Water Vapor Feedback

Increasing
greenhouse
gases

> Warming

=

Increased Water-vapor
atmospheric > greenhouse
water vapor strengthens

e ______________________________J e ______________________________ _Jj

As water vapor increases, precipitation and evaporation also increase.



Arctic Winter Cloud Feedback

Increasing

greenhouse
gases

Warming

=

More clouds

Reduced OLR &
iIncreased
downward LW
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Eocene (50 MYA, ~1200 ppmv)

Cool tropics, warm  Crocodiles in Greenland,
high-latitudes Palm trees in Wyoming!
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(d) APRC

NCAR

GFDL
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FIG. 1. Change in winter (November—February) Arctic climate over the course of the IPCCAR4 4 X CO, experiment. The models are
(a)-(d) NCAR CCSM3.0, which loses most Arctic winter sea ice and (e)—(h) GFDL CM2.0, which loses minimal winter Arctic winter sea
ice. For each variable, the difference between the mean over the last 10 yr and the mean over the first 10 yr is plotted. (a),(e) —ASIC, the

negative of the change in sea ice concentration (100% means a complete loss of sea ice); (b),(f) ATAS, the change in surface air tem-
perature; (c),(g) ACRF, the change in cloud radiative forcing; and (d),(h) APRC, the change in convective precipitation rate.

Abbott et al., ] Climate, 2009
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Figure 2. Winter (DJF) cloud radiative forcing averaged
north of 60°N as a function of surface temperature averaged
north of 60°N, which changes due to either changes in
boundary conditions or CO,. For each of the following cases,
one datapoint represents one model run at a different CO,
concentration: modern configuration land (red diamonds),
Eocene configuration land (red squares), modern configura-
tion ocean (blue circles), and Eocene configuration ocean
(blue triangles).

Abbott et al., GRL, 2009



Conclusions

Current models do not account
for the observed rapid melt-back
of the Arctic sea ice.

The Arctic shows us climate
change in “fast forward.”

The positive surface albedo
feedback is only one of several
contributing factors.

Cloud and water vapor feedbacks
may also be very important.




Schematic of accelerated warming in the Arctic-Boreal zone
from effects in the physical climate system.
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