Grid-Enabled Earth System Models

S. Zhou, B. Womack, G. Higgins
Northrop Grumman IT /TASC, 4801 Stonecroft Blvd., Chantilly, VA 20151

Abstract- Grid Computing is quickly being adopted in
both commercial and academic environments. It has
been used in some areas within the scientific
community, but, has not been widely accepted within
the Earth science community. In this paper we will
discuss a combination of new technologies including
Lambda networks, Grid Computing, the Earth System
Modeling Framework (ESMF), and the Common
Component Architecture (CCA) that together are
providing promising opportunities to effectively apply
Grid computing in the Earth science domain. We will
describe a prototype distributed Earth system model
that is being developed using standard Grid service
technology and discuss how advances in technology
are enabling practical application of Grid computing
in this environment.

[. INTRODUCTION

Typical Earth system models consist of several complex
model components coupled together through data
exchanges. They require large amounts of data for
initialization and may produce an even greater amount
during execution. Ideally, an Earth system model would
like to have the best combination of components available
in the community and to execute on the platform that
those components were optimized for. For validation, an
Earth system model may also need to compare results
using components from different institutions. However,
efficiently distributing the data required by model
components and managing their execution on multiple
computer systems have been two major barriers to the
development of distributed Earth system models.

In the last few years, several relevant technology
advances have been made: Lambda networks, Grid
Computing, Earth System Modeling Framework, and
Common Component Architecture. Lambda networks
provide transparent end-to-end dedicated bandwidth for
fast delivery of huge amounts of data [1, 2]. A Lambda
network is being constructed to connect institutions across
the U.S. Grid computing integrates networking,
communication, computation and information to provide
a computation and data management capability that forms
a virtual platform for information [3]. Recently the Open
Grid Services Architecture (OGSA) has been proposed to
standardize Grid Computing. Grid-enabled applications
are being demonstrated. The Earth System Modeling
Framework (ESMF) is a community framework for Earth

systems, funded by NASA’s ESTO/CT project [4]. Its
goal is to facilitate model coupling and to make models
interoperable across organizations. The ESMF software
consists of a superstructure (coupling) and an
infrastructure (data structures and utilities). DOE also
supports the Common Component Architecture (CCA)
project defining a minimal set of standard interfaces for a
high-performance component framework [5].

ESMF provides a component framework designed for the
Earth system community. The current combination of
increasing availability of high-speed dedicated bandwidth,
standards for Grid applications, and high-performance
component frameworks for Earth system models provide
an important opportunity to evaluate how the ESMF
architecture and its compliant applications can be
extended to work in a Grid Computing environment. The
current ESMF implementation is directed at running
coupled model components on a local computer.
Consequently, to couple ESMF compliant model
components from different institutions, the source codes
and their supporting environment such as input data and
libraries have to be physically ported to one computer.
Porting the source code for a complex Earth system
model to a new machine is only the beginning. To be used
operationally, the model must then go through a rigorous
validation process to ensure that the porting process did
not introduce any errors into the model. It may also need
to undergo a performance optimization process to allow it
to run efficiently on the new computer.

ESMEF’s component design encapsulates an Earth system
model component’s implementation behind a standard
interface and provides a handle to access the component.
This design facilitates interaction among model
components and conforms in principle to the design of a
Grid service. To explore this issue, we have Grid-enabled
an ESMF-CCA Prototype 1.0 [6, 7] based on CCA’s
Ccaffeine framework and the ESMF design. XCAT [8], a
CCA compliant framework, is chosen to replace
Ccaffeine since XCAT allows for CCA components to be
compatible with Open Grid Standard Interface (OGSI)
specification, which enables CCA components to be
accessible via standard Grid clients.

In this paper, we will describe the ESMF-CCA
Prototype 2.0 and how its technology can be used to
support Earth system models on the Grid.



II. DESCRIPTION OF ESMF-CCA PROTOTYPE 1.0

Coupling model components in an extensible and
flexible way is a very challenging and domain-specific
problem. CCA components interact by adhering to the
Uses-Provides design pattern. This means that each
component publishes the functionality that it allows other
components to access. These published methods are
known as Provides Ports. Each component also publishes
the functionality that it needs to have other components
perform for it. These published methods are known as
Uses Ports. Conceptually a ‘port’ can be thought of as a
contract between components of a system. It is the
equivalent of Java interfaces and pure abstract class
definitions in C++. The CCA framework includes one
additional type of port. The ‘go’ port is the starting point
for executing systems of components. Driver components
implement a ‘go’ port which is used for scheduling and
controlling the running sequence of components. A CCA
compliant framework, like Ccaffeine and XCAT, is
responsible for connecting and managing ports. For
example, a component, UseAtm, with a Uses Port of
name Atml and type ESM, can be connected to another
component, ProvideAtm, with a Provides Port of name
Atm?2 and the same type, ESM (see Figure 1).

UseAtm Atml + """"""" 'l Atm2 ProvideAtm

Component Connect Uses and Provides Ports Component

Figure 1 Illustration of coupling two components using
CCA

A typical Earth system model component such as an
atmospheric model has three general functions that it must
perform: initialization, run, and finalization. An
initialization routine provides the functionality to prepare
a model for simulation and includes initialization of
parameters and boundary conditions. A run routine
provides the functionality to allow the model simulation
to manage its time-evolution. A finalization routine
provides the functionality to safely shut down operations,
clean up memory, and close any open files. ESMF’s

component model design requires an ESMF-compliant
component to provide implementations for these standard
functions and the ESMF superstructure is responsible for
mapping these routines to the standard interfaces that an
ESMF application component (driver) expects to call. In
addition, ESMF provides a standardized, self describing,
format for data exchange among model components
through the ESMF_State data type.

A key difference between the CCA component
environment and the ESMF component environment is
ESMEF’s requirement for the user to supply additional
standard methods (e.g. initialization, run and finalization)
beyond those required for registering the component in
the framework. ESMF provides a standard component
adapter class, ESMF Comp Component that maps the
standard component interface to the functionality
implemented by the model developer’s code. CCA is not
application-specific and does not require any additional
methods or standard interfaces.

Our ESMF-CCA Prototype 1.0 utilizes CCA’s Uses-
Provides design pattern to create and couple those CCA
components that use the ESMF standard component
interfaces described above. This allows ESMF-compliant
components to run within a CCA component framework.
CCA’s Uses-Provides design pattern has been
successfully used for coupling various components in a
non-intrusive and flexible way.

[ll. DESCRIPTION OF ESMF-CCA PROTOTYPE
2.0

Ideally, an Earth system model would like to have the
best combination of components available in the
community and to execute on the platform that those
components were optimized for. However, efficiently
distributing the data required by model components and
managing their execution on multiple computer systems
in a standard way have been two major barriers to the
development of distributed Earth system models.

XCAT [8], a CCA compliant framework, has been
developed to enable CCA components to be compatible
with the Open Grid Standard Interface (OGSI)
specification. The OGSI enables CCA components to be
accessible via standard Grid clients. Basically, XCAT
employs the Remote Method Invocation (RMI)
mechanism implemented by XSOAP [9] to allow
communication and control among local and remote
components.

Merging the two standards (CCA and OGSI), XCAT
uses an approach where a component is modeled as a set
of Grid services. In the following section, we will use the
XCAT3 [10] framework, implemented in Java, to



illustrate some of key features beyond CCA’s Ccaffeine
framework:

e XCATComponentID: an interface that extends
the CCA’s ComponentID. There are a few
methods used internally by the XCAT3
framework related to composing components
from a remote Provides Port.

e  Builder Service: a CCA port implemented by
CCA compliant frameworks that allows a
component to dynamically create and compose
other components into an application. Some
methods exposed by the Builder service for
component lifecycle purposes are createlnstance
for creating an instance of a component, and
destroyInstance for eliminating the component
instance from the scope of the framework. Since
XCATS3 is a distributed component framework,
its createlnstance is capable of creating
component instances on remote locations using
the Globus GRAM [11] protocol provided by the
Java CoG Kit [12].

e  Scripting Interface: XCAT3 provides an
interface to the Builder service using Jython
scripts. The Jython API available to the user
closely mirrors the API provided by Builder
services. The Ccaffeine framework used in
ESMF-CCA Prototype 1.0 employs a custom-
design script to compose local components. In
addition, a GUI is also provided for local
component composition within the Ccaffeine
framework. The GUI tool is very helpful for
component development and multi-level
component composition.

ESMF-CCA Prototype 2.0 essentially replaces CCA’s
Ccaffeine framework with XCAT3 while keeping
ESMEF’s three standard methods, Initialize, Run, and
Finalize, and the standard data type, ESMF_State, for
exchanging data.

IV. ACODE TO TEST ESMF-CCA PROTOTYPE
2.0

To explore the compatibility issues between ESMF
and CCA and test the ESMF-CCA Prototype 1.0, we
designed and developed a 2D Simple Coupled
Atmosphere-Ocean Model (SCAOM) [7]. SCAOM is
computationally similar to, but physically simpler than,
the Coupled Shallow Water Model [13]. The atmosphere
model component uses a coarse rectangular grid while the
ocean model component uses a fine grid. Each model
component consists of a forward finite-difference

advection scheme and periodic boundary conditions along
the x direction. Data is exchanged at the overlapped
boundary along the y direction. In addition, each model
component can use a different independent timestep. To
couple an atmosphere with an ocean model component,
we also developed two simple couplers: one for
exchanging data from the atmosphere to the ocean and
another one for exchanging data from the ocean to the
atmosphere. Basically, the couplers transform data from
one grid to another grid. The code is written in C++ since
CCA'’s Ccaffeine framework supports C++ naturally.

XCAT3 is written in Java. It currently provides a
complete Java API with a C++ API to be released soon.
We are in the process of converting the SCAOM code
from C++ to Java. At the time of writing this paper, we
have developed a stub code, SSCAOM, essentially
supporting the interfaces of our original SCAOM code.

V. RESULTS

A typical sequential coupling sequence between an
atmosphere model and a remote ocean model is depicted
in Figure 2a, where tgqa is the time advance in one
coupling cycle and ngy is the number of coupled cycles.
Without a framework like XCAT, all the components in
Figure 2a including the ocean proxy component would
need to be implemented by the model developer. This
means that the developer would need to be familiar with
network programming with socket, Remote Procedure
Call (RPC), RMI, or web services, etc. But the XCAT
framework used by ESMF-CCA 2.0 automatically
provides a local proxy component for the remote ocean
that is hidden from the user. This proxy component
handles all of the RMI necessary to execute the remote
component and is one of its most user-friendly features.

At the beginning of a simulation, the framework
creates each component. In the ESMF-CCA Prototype
2.0, we still use CCA’s setService utility to register the
components of atmosphere, ocean, coupler from
atmosphere to ocean (CplAtmXOcn), and coupler from
ocean to atmosphere (CplOcnXAtm). The model
components exchange data through coupler components
by passing import and export states that are of type
ESMF _State (see Figure 2b). The atmosphere component
first provides its data at its boundary, exportAtm, to the
coupler, CplAtmXOcn. CpleAtmXOcn uses exportAtm,
transforms it into importOcn with an interpolation routine,
and provides importOcn to the ocean component. With
importOcn, the ocean components run its finite-difference
advection scheme for n*fy,., timesteps while satisfying its
periodic boundary condition in the x direction. After that,
the ocean component provides its data at the boundary,
exportOcn, to the coupler, CplOcnXAtm. The coupler,
CpleOcnXAtm uses exportOcn, transforms it into



importAtm, and provides importAtm to the atmosphere
component.  Similar to the ocean component, the
atmosphere component uses importAtm, runs its finite-
difference advection scheme for m*t,,, timesteps while
satisfying its periodic boundary condition in the x
direction. Then, the atmosphere component provides its
data at the boundary, exportAtm, to the -coupler,
CpleAtmXOcn. This completes a coupling cycle with the
time advanced, tyopa (51 *toen + M ¥t44)-
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Figure 2 (a) A sequential coupling between an
atmosphere and a remote ocean model component. (b)
The flow diagram (a) as implemented in the ESMF-
CCA Prototype 2.0.

To test the ESMF-CCA Prototype 2.0, a Java stub
code, SSCAOM, supporting the interfaces of a 2D simple
coupled climate model, is integrated into the ESMF-CCA
Prototype. SSCAOM allows a user to have the following

options: (1) different grid resolution for Atmosphere and
Ocean model components to test regrid functionality in
the coupler components. (2) different number of iterations
for Atmosphere and Ocean model components to mimic
their corresponding production codes.

In the ESMF-CCA Prototype 2.0, each component is
developed, compiled as a java class (.class), and stored in
an individual directory. With a Jython script, a user lists
Provides components and Uses components, specifies
their locations (e.g., file directory and computer machine),
and then chooses one of three mechanisms to handle
creation of the components: local, ssh, or gram (which
uses the Globus GRAM). After that, live instances of the
components are created on the target computer machine
and the Provide Port and Uses Port of the components
are connected and the execution of the program is started
by invoking the go method of the XCATGoPort
implementation of the Uses component.

Atmosphere
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Figure 3 Composition of components without a third-
party registry service. A Jython script is used to
launch local and/or remote components. After that,
the Builder Service is used to couple components by
connecting their Uses to Provides Ports.

We have placed an Ocean component on a remote
machine and used the ssh method to create and execute
the remote component. With the proxy RMI technology
used in XCAT, the procedure is similar to running a
simulation with the Ocean component on the local
machine. The difference is apparent when specifying the
location of the remote component and determining the
mechanism for launching the component in a Jython
running script. The process is illustrated in Figure 3.

When composing an application without using a
registry service as shown in Figure 3, a user has to know
in advance, all the components to be likely used. The



locations and methods of invocation for each component
are written into the code. That requirement can be
simplified by using a Registry Service. A Registry that is
OGSI-compliant, persistent, and implemented by a third
party, can be wused to register locators of those
components with Provides Port. Then a user can use a
Jython script to query the Registry for the availabilities,
capabilities and the location of the component. The script
can select the components that it wishes to use and
connect them via Builder Services. For example, a user
can pick one of the available Ocean components with the
necessary component interface before starting a
simulation (see Figure 4). This capability to select and use
similar model components from different providers is a
key feature that is needed in the Earth science community.
It enables the user to quickly configure and run
experiments that examine the behavior of coupled model
systems. Climate modeling, in particular, can use this
feature to explore and understand the factors that
contribute to present climate predictions since different
models can produce significantly different results due to
even small variations in initial conditions and parameters.
Ensemble studies that include multiple models
components of the same type could also be easily
constructed.
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Figure 4 Composing components with a third-party
Registry Service.

VI. DISCUSSION

By testing the ESMF-CCA Prototype 2.0 with a stub
of a simple coupled climate model mentioned above, we
found that a Grid-enabled Earth system can be supported
by combining ESMF with CCA. ESMF and CCA
complement each other nicely: ESMF standardizes the
interfaces to Earth system model components and
provides utilities and standard data formats for building

and coupling these components together. This
combination considerably facilitates coupling models via
the Grid. CCA provides a flexible method for controlling
and managing components and their coupling. CCA’s
component model makes a CCA component easily
transformed into a Grid service.

ESMF’s component model is based upon an interface
wrapper that provides a common set of standard methods.
These interface methods are connected to user provided
implementation code through a C function pointer table
contained within the ESMF COMP class. The user
implementation for ESMF component methods are
usually provided as a Fortran90 module containing
functions that correspond to the standard component
methods. However, the function pointer table entries can
be assigned to any function that matches the signature of
the expected methods.

We are currently investigating the use of a Grid-
enabled ESMF proxy component as shown in Figure 5. It
uses the external interface that the ESMF component
wrapper expects for the standard user provided functions,
but, internally the proxy component redirects the method
calls to a Grid-service that runs on another machine.

ESMF _Comp Wrapper

+ESMF_Complnit(:void The proxy component class provides an

+ESMF_CompRun(} void im plementation for the ESMF_Comp
+ESMF _CompFinalize(tvoid methods and is configured to access an
"'1’3 ESMF component running as a Gricd
Service on ancther m achine

- |
== realize == |

——————————— iy ESMF GridService
Remate Access [ ]
[

Figure S Proxy component class diagram

ESMF_CompProxy

LomplocationURL
ProxyConfig Config

+ESMF _Complnit): void
+ESMF _CompRuni) void
+ESMF _CompFinalize(;void

The Proxy component is configurable to allow the user
to specify information related to the component’s actual
location, where its initialization files reside, where its
output should go, etc. These options allow the proxy to be
reused for connecting to alternative Grid-service
providers as shown in Figure 6.

The XCAT3 framework provides a relatively simple
method to publish an ESMF component as a standard
Grid-service. The addition of an ESMF compliant Proxy
component will make it possible for ESMF application
developers to quickly connect an ESMF component that
has been published as a Grid service through XCATS3.



ESMF application developers will be able to avoid the
painful process of porting and revalidating the model
components that they want to include in their Earth
system modeling application. Currently, when a new
coupled Earth system model is created, it takes years of
development effort before any results can be evaluated.
Using the Grid services and proxy model described here,
the time required to make the initial connections
necessary will be greatly reduced.

Remote Grid Service Node 1
Main Compute Node

ESMF_Application ESMF_Comp Wrapper Obj

ESMF_Comp Wrapper Obj

Atm osphere Com ponent
Giid Service

ESMF_CompProxy Obj

Remote Grid Service Node 2

N i osphere Com ponert
User Provided Ocean Obj B T Amomnere
to use any available grid ssrvic:

Figure 6 ESMF proxy component accessing a remote
component using grid services

One frequent objection to using the Grid for Earth
system modeling applications is that they tend to produce
and consume too much data. An average user can only
expect to see 10-50 Mbps throughput using the Internet2
even though it is a 10 Gbps network [14]. Under these
conditions, the time necessary to move large input and
output data sets that are commonly produced make it
unrealistic to consider the use of distributed computing in
the Earth system modeling community. However, the
primary limitation for throughput using the internet and
internet2 is not lack of bandwidth. It is the design of the
TCP protocol that provides the foundation for most data
transfer protocols commonly used. For example in
October 2003, UIC's National Center for Data Mining
(NCDM) and Laboratory for Advanced Computing
flashed a set of astronomical data across the Atlantic at
6.8 gigabits per second—6,800 times faster than the 1
megabit per second effective speed that connects most
companies to the Internet. In the Oct. 10 test run, 1.4
terabytes of astronomical data were transmitted from
Chicago to Amsterdam in 30 minutes using UDT (UDP-
based Data Transport), a new protocol developed by the
NCDM. Moving the same amount of data using today's
standard protocol for data transfers, TCP, would take 25
days [15]. Hence, data movement is no longer the large
obstacle that it used to be when considering distributed
Earth system models. New transport protocols such as
UDT are removing these barriers and even greater
bandwidth will soon be available. The National Lambda
Rail is currently under development and will provide
multiple dedicated Gbps links between the major research
centers across the United States [14].

The High End Computing Network (HECN) Group at
Goddard is currently implementing a local Lambda test
network in preparation for connecting to the National
Lambda Rail in the Fall ’04. This test network will
provide multiple 10 Gigabit dedicated lambdas between
two Linux clusters located at opposite sides of the GSFC
facility. We expect to extend our prototype system to
couple two of NASA’s ESMF compliant models [4] (e.g.,
one land model and one atmosphere model) over the
Lambda network using two parallel computers at NASA’s
Goddard Space Flight Center (GSFC).

VIl. CONCLUSION

We have developed an ESMF-CCA Prototype 2.0 by
updating our ESMF-CCA Prototype 1.0 with the features
of Grid computing. Preliminary testing on the prototype
shows that Earth system models can be accessed remotely
with Grid technology in a user-friendly way.
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