
Tidal Disruption of Stars by Supermassive Black Holes

Several NASA missions have seen evidence of a black hole disrupting a 
star, usually as a burst of high-energy radiation. If we want to 
understand our observations, as well as gain insight into how stars 
behave as they are torn apart and how black holes feed and grow, we 
need underlying theory and simulations about how this dramatic 
process works.  

We used Einstein’s general theory of relativity and realistic models to 
learn about the possible scenarios and conditions leading up to a star’s 
disruption. Including relativity gives us more accurate values for gravity 
in the model and makes black holes more able to disrupt stars than 
previously thought. We also looked at how stars orbiting a black hole 
that are partially disrupted may return to the black hole later and be 
finished off. 

Our work improves scientists’ ability to know what conditions lead to 
an observed stellar disruption event. Our results help us better 
understand how they start feeding on stars and what kind of light 
those events produce, which may ultimately let us learn 
more about the variety of black holes out there. 
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mass dM/dE is nonzero for �% �%� �- -E . The char-
acteristic energy spread Δò is set to an order-of-magnitude
estimate for the range in fluid binding energies (Stone et al.
2013)
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Sometimes rt is replaced with the actual pericenter of the orbit
rp (e.g., Lodato et al. 2009).

Phinney (1989) was the first to recognize that rt is not exactly
the maximum orbital pericenter for a complete tidal disruption, a
distance we would like to name the “physical tidal radius” (we
assign it the symbol*t). To remedy the neglect of internal stellar
structure, he suggested that*t could be estimated by applying to rt
a correction factor based on the star’s apsidal motion constant and
its dimensionless binding energy. For this reason, rt is sometimes
reinterpreted to be *t, but without evaluating how it might differ
from rt (Stone et al. 2013). Several groups have tried to include
stellar structure in the calculation of *t, but employing purely
Newtonian dynamics on polytropic stars (e.g., Luminet &
Carter 1986; Khokhlov et al. 1993; Guillochon & Ramirez-
Ruiz 2013; Mainetti et al. 2017). Recently, there have been efforts
beginning from genuine main-sequence stellar structures, but still
restricted to Newtonian dynamics, and examining a limited range
of stellar masses (only 1 M: in Goicovic et al. 2019, M1 : and

M3 : at several ages in Law-Smith et al. 2019, M0.3 :, M1 :, and
M3 : at three different ages in Golightly et al. 2019). Others have

explored the dependence on black hole mass induced by relativistic
effects, but without any reference to internal stellar structure or the
hydrodynamics of disruption (e.g., Ivanov & Chernyakova 2006;
Kesden 2012; Servin & Kesden 2017). Earlier works employed a
post-Newtonain approximation (e.g., Ayal et al. 2000) or explored
the use of relativistic hydrodynamics simulations for strong

encounters of polytropic stars, but without stellar self-gravity
(e.g., Laguna et al. 1993). In some cases, relativistic effects were
approximated by a “generalized Newtonian potential” (e.g., Gafton
et al. 2015; Gafton & Rosswog 2019) or in terms of genuine
relativistic dynamics (e.g., Frolov et al. 1994), but assuming a
polytropic structure for the star and computing stellar self-gravity
in an entirely Newtonian fashion (in the last case, fixing it to its
initial stellar surface value). Many of these explorations of*t also
computed the energy distribution dM/dE and explored the relation
between the remnant mass and orbital pericenter in partial
disruptions; in one case (Manukian et al. 2013), they also
examined the remnants’ orbital properties. However, all this work
was subject to the limitations already enumerated.
This is the first in a series of four papers in which we present

the results of a large number of simulations designed to include
all relevant physical processes. Tidal stresses are treated in
exact general relativity, as are the fluid dynamics of the
disrupted star. The stars’ initial states are taken from the stellar
evolution code MESA, with ages halfway through their main-
sequence lifetimes so as to correspond to the time-averaged
state of main-sequence disruptions. Stellar self-gravity is
computed with the Newtonian Poisson equation, but in a tetrad
frame comoving with the star whose metric (within the
simulation volume) departs from Minkowski only by very
small amounts (see the appendix in Ryu et al. 2020a). For a
fiducial black hole mass of M106

:, we treat stars of eight
different masses Må, from M0.15 : to M10 :. For three of these
stellar masses ( M0.3 :, M1 :, and M3 :), we consider black
holes of six different masses, from M105

: to q M5 107
:. All

our black holes, however, have zero spin. In each simulation,
the star’s trajectory has eccentricity e such that 1−e ; 10−8.
Both to closely determine *t and to map out how the
properties of partial disruptions depend on *rp t, we simulated
encounters for each �M M, BH( ) pair for a number of pericenters
spaced by � r0.05 0.2 t� .
A schematic overview of the entire process can be viewed in

Figure 1. The star begins to be stretched when its distance to

Figure 1. Successive moments in a full TDE. The red line indicates the star’s orbit around the black hole (black circle). Each inset figure presents a snapshot of the
density distribution in the orbital plane within our simulation box. The white circle in each snapshot shows the initial stellar radius. Partway through the event, we
replace the cubic box with a rectangular box (see Paper II); we draw a red square in the rectangular boxes to show the position and size of the original cubic box. Note
that the rectangular boxes are not drawn to the same scale as the cubic boxes, and the dotted curves marking rt, r10 t, and r20 t are likewise not drawn to scale.
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A star is “squeezed” by the tidal gravity of the black hole, which in particularly strong 
cases can lead to the star stretching and tearing apart.


